L(s) = 1 | + (0.965 + 0.258i)2-s + (0.161 − 1.72i)3-s + (0.866 + 0.499i)4-s + (−2.21 − 0.593i)5-s + (0.602 − 1.62i)6-s + (2.94 − 2.94i)7-s + (0.707 + 0.707i)8-s + (−2.94 − 0.556i)9-s + (−1.98 − 1.14i)10-s + (−0.431 + 1.60i)11-s + (1.00 − 1.41i)12-s + (1.58 − 3.23i)13-s + (3.60 − 2.08i)14-s + (−1.38 + 3.72i)15-s + (0.500 + 0.866i)16-s + (1.96 + 3.41i)17-s + ⋯ |
L(s) = 1 | + (0.683 + 0.183i)2-s + (0.0932 − 0.995i)3-s + (0.433 + 0.249i)4-s + (−0.990 − 0.265i)5-s + (0.245 − 0.662i)6-s + (1.11 − 1.11i)7-s + (0.249 + 0.249i)8-s + (−0.982 − 0.185i)9-s + (−0.628 − 0.362i)10-s + (−0.129 + 0.485i)11-s + (0.289 − 0.407i)12-s + (0.439 − 0.898i)13-s + (0.964 − 0.556i)14-s + (−0.356 + 0.961i)15-s + (0.125 + 0.216i)16-s + (0.477 + 0.827i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 234 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.495 + 0.868i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 234 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.495 + 0.868i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.47800 - 0.858484i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.47800 - 0.858484i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.965 - 0.258i)T \) |
| 3 | \( 1 + (-0.161 + 1.72i)T \) |
| 13 | \( 1 + (-1.58 + 3.23i)T \) |
good | 5 | \( 1 + (2.21 + 0.593i)T + (4.33 + 2.5i)T^{2} \) |
| 7 | \( 1 + (-2.94 + 2.94i)T - 7iT^{2} \) |
| 11 | \( 1 + (0.431 - 1.60i)T + (-9.52 - 5.5i)T^{2} \) |
| 17 | \( 1 + (-1.96 - 3.41i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (0.878 - 3.27i)T + (-16.4 - 9.5i)T^{2} \) |
| 23 | \( 1 - 5.07T + 23T^{2} \) |
| 29 | \( 1 + (4.53 - 2.61i)T + (14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (0.610 - 2.27i)T + (-26.8 - 15.5i)T^{2} \) |
| 37 | \( 1 + (-1.21 - 4.55i)T + (-32.0 + 18.5i)T^{2} \) |
| 41 | \( 1 + (-2.88 + 2.88i)T - 41iT^{2} \) |
| 43 | \( 1 - 4.92iT - 43T^{2} \) |
| 47 | \( 1 + (-4.39 + 1.17i)T + (40.7 - 23.5i)T^{2} \) |
| 53 | \( 1 - 6.69iT - 53T^{2} \) |
| 59 | \( 1 + (8.36 - 2.24i)T + (51.0 - 29.5i)T^{2} \) |
| 61 | \( 1 - 11.6T + 61T^{2} \) |
| 67 | \( 1 + (9.81 + 9.81i)T + 67iT^{2} \) |
| 71 | \( 1 + (13.5 + 3.63i)T + (61.4 + 35.5i)T^{2} \) |
| 73 | \( 1 + (-6.61 + 6.61i)T - 73iT^{2} \) |
| 79 | \( 1 + (8.13 - 14.0i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (2.02 + 7.55i)T + (-71.8 + 41.5i)T^{2} \) |
| 89 | \( 1 + (-8.95 + 2.40i)T + (77.0 - 44.5i)T^{2} \) |
| 97 | \( 1 + (6.05 + 6.05i)T + 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.25630363429544012397180794921, −11.25197850467177130254035402577, −10.56094736053001621615739777649, −8.502753015255585506027179553604, −7.75597279842494361815538367693, −7.28108643884573526483019671867, −5.82843035570733005325632897713, −4.55837439515377923400441498286, −3.42564655659896838692335931939, −1.38116461148379341500836611215,
2.58370289961841285962198997534, 3.85997956113235884820837962234, 4.86621769724656660292531880242, 5.77098102103636828503764268694, 7.40550295390405902315908570520, 8.555422650214004070370147074693, 9.341779654041291949835848556995, 10.92484104372173002773331024154, 11.42877164679856774867327121856, 11.87468029941098504461278393073