L(s) = 1 | + (−0.965 − 0.258i)2-s + (−0.679 − 1.59i)3-s + (0.866 + 0.499i)4-s + (−1.16 − 0.313i)5-s + (0.244 + 1.71i)6-s + (−3.18 + 3.18i)7-s + (−0.707 − 0.707i)8-s + (−2.07 + 2.16i)9-s + (1.04 + 0.604i)10-s + (−0.226 + 0.844i)11-s + (0.208 − 1.71i)12-s + (3.53 + 0.709i)13-s + (3.90 − 2.25i)14-s + (0.295 + 2.07i)15-s + (0.500 + 0.866i)16-s + (−1.49 − 2.58i)17-s + ⋯ |
L(s) = 1 | + (−0.683 − 0.183i)2-s + (−0.392 − 0.919i)3-s + (0.433 + 0.249i)4-s + (−0.522 − 0.140i)5-s + (0.0996 + 0.700i)6-s + (−1.20 + 1.20i)7-s + (−0.249 − 0.249i)8-s + (−0.692 + 0.721i)9-s + (0.331 + 0.191i)10-s + (−0.0681 + 0.254i)11-s + (0.0600 − 0.496i)12-s + (0.980 + 0.196i)13-s + (1.04 − 0.601i)14-s + (0.0762 + 0.535i)15-s + (0.125 + 0.216i)16-s + (−0.362 − 0.627i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 234 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.196 - 0.980i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 234 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.196 - 0.980i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.157376 + 0.192031i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.157376 + 0.192031i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.965 + 0.258i)T \) |
| 3 | \( 1 + (0.679 + 1.59i)T \) |
| 13 | \( 1 + (-3.53 - 0.709i)T \) |
good | 5 | \( 1 + (1.16 + 0.313i)T + (4.33 + 2.5i)T^{2} \) |
| 7 | \( 1 + (3.18 - 3.18i)T - 7iT^{2} \) |
| 11 | \( 1 + (0.226 - 0.844i)T + (-9.52 - 5.5i)T^{2} \) |
| 17 | \( 1 + (1.49 + 2.58i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (1.92 - 7.17i)T + (-16.4 - 9.5i)T^{2} \) |
| 23 | \( 1 + 0.154T + 23T^{2} \) |
| 29 | \( 1 + (8.13 - 4.69i)T + (14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (1.13 - 4.22i)T + (-26.8 - 15.5i)T^{2} \) |
| 37 | \( 1 + (1.18 + 4.40i)T + (-32.0 + 18.5i)T^{2} \) |
| 41 | \( 1 + (-3.99 + 3.99i)T - 41iT^{2} \) |
| 43 | \( 1 + 2.32iT - 43T^{2} \) |
| 47 | \( 1 + (6.31 - 1.69i)T + (40.7 - 23.5i)T^{2} \) |
| 53 | \( 1 - 0.732iT - 53T^{2} \) |
| 59 | \( 1 + (13.8 - 3.72i)T + (51.0 - 29.5i)T^{2} \) |
| 61 | \( 1 - 3.28T + 61T^{2} \) |
| 67 | \( 1 + (3.76 + 3.76i)T + 67iT^{2} \) |
| 71 | \( 1 + (-14.6 - 3.93i)T + (61.4 + 35.5i)T^{2} \) |
| 73 | \( 1 + (-0.594 + 0.594i)T - 73iT^{2} \) |
| 79 | \( 1 + (-1.78 + 3.09i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (0.654 + 2.44i)T + (-71.8 + 41.5i)T^{2} \) |
| 89 | \( 1 + (5.91 - 1.58i)T + (77.0 - 44.5i)T^{2} \) |
| 97 | \( 1 + (7.88 + 7.88i)T + 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.42912185860841945393665203697, −11.61911587904902970548305531693, −10.64316393633199789432846392585, −9.343955205207747273687549590840, −8.570312803152238584104599167546, −7.54553568408785884508744819902, −6.43787205022635639327838580695, −5.65863436978248231863240791564, −3.48912642073540497181206815658, −1.97945678319321825212780515714,
0.25129159975907292867187361872, 3.32612749905230765786412331085, 4.24926765228020640123709021008, 5.98891409011739199536437471214, 6.79665798038060028067679617920, 8.024783381718990779682067403885, 9.231338822878937219594960888488, 9.913674104211266992341676507299, 11.07910122711786730753754645892, 11.17787521545850648946508520322