L(s) = 1 | − 2-s + (0.355 + 1.69i)3-s + 4-s + (−2.14 − 3.71i)5-s + (−0.355 − 1.69i)6-s + (−0.751 − 1.30i)7-s − 8-s + (−2.74 + 1.20i)9-s + (2.14 + 3.71i)10-s − 4.24·11-s + (0.355 + 1.69i)12-s + (−3.60 − 0.0419i)13-s + (0.751 + 1.30i)14-s + (5.53 − 4.95i)15-s + 16-s + (0.0242 − 0.0419i)17-s + ⋯ |
L(s) = 1 | − 0.707·2-s + (0.205 + 0.978i)3-s + 0.5·4-s + (−0.959 − 1.66i)5-s + (−0.145 − 0.692i)6-s + (−0.283 − 0.491i)7-s − 0.353·8-s + (−0.915 + 0.401i)9-s + (0.678 + 1.17i)10-s − 1.27·11-s + (0.102 + 0.489i)12-s + (−0.999 − 0.0116i)13-s + (0.200 + 0.347i)14-s + (1.42 − 1.28i)15-s + 0.250·16-s + (0.00588 − 0.0101i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 234 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.524 + 0.851i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 234 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.524 + 0.851i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.174530 - 0.312498i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.174530 - 0.312498i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + T \) |
| 3 | \( 1 + (-0.355 - 1.69i)T \) |
| 13 | \( 1 + (3.60 + 0.0419i)T \) |
good | 5 | \( 1 + (2.14 + 3.71i)T + (-2.5 + 4.33i)T^{2} \) |
| 7 | \( 1 + (0.751 + 1.30i)T + (-3.5 + 6.06i)T^{2} \) |
| 11 | \( 1 + 4.24T + 11T^{2} \) |
| 17 | \( 1 + (-0.0242 + 0.0419i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (-2.87 + 4.98i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (-3.41 + 5.91i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 - 2.21T + 29T^{2} \) |
| 31 | \( 1 + (-3.74 - 6.49i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (1.35 + 2.34i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (3.68 - 6.39i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (2.89 + 5.00i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (1.67 - 2.89i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 - 1.82T + 53T^{2} \) |
| 59 | \( 1 + 1.88T + 59T^{2} \) |
| 61 | \( 1 + (0.877 + 1.51i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-1.73 + 3.00i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (-0.645 + 1.11i)T + (-35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 + 12.9T + 73T^{2} \) |
| 79 | \( 1 + (-4.24 + 7.35i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (0.370 - 0.642i)T + (-41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 + (-0.288 - 0.500i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (2.59 + 4.49i)T + (-48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.74471053367781831228803227597, −10.67684149288535506598494600378, −9.821675864538037933939737611147, −8.857129603668757029466513078222, −8.232162130051598721694807537792, −7.23053351468390972986131250972, −5.13113865046407338699067204641, −4.62768563717673725574847339213, −3.00233180854061555298963123271, −0.33418551454119104893748572633,
2.46553784938447862938419620179, 3.25107678388294296367734290051, 5.71670636010093322481053712890, 6.89410507032120786690619282995, 7.59413537667196511401541395889, 8.136134638401834129840686700193, 9.704637346843388628228111507074, 10.58705253788001170608028038460, 11.64450510524164948299705121870, 12.11785414099702228182275891134