| L(s) = 1 | + (−0.258 + 0.965i)2-s + (1.60 + 0.649i)3-s + (−0.866 − 0.499i)4-s + (−0.901 + 3.36i)5-s + (−1.04 + 1.38i)6-s + (−0.0396 − 0.0396i)7-s + (0.707 − 0.707i)8-s + (2.15 + 2.08i)9-s + (−3.01 − 1.74i)10-s + (−4.98 − 1.33i)11-s + (−1.06 − 1.36i)12-s + (2.77 − 2.29i)13-s + (0.0485 − 0.0280i)14-s + (−3.63 + 4.81i)15-s + (0.500 + 0.866i)16-s + (1.83 + 3.17i)17-s + ⋯ |
| L(s) = 1 | + (−0.183 + 0.683i)2-s + (0.927 + 0.374i)3-s + (−0.433 − 0.249i)4-s + (−0.403 + 1.50i)5-s + (−0.425 + 0.564i)6-s + (−0.0149 − 0.0149i)7-s + (0.249 − 0.249i)8-s + (0.719 + 0.694i)9-s + (−0.954 − 0.550i)10-s + (−1.50 − 0.402i)11-s + (−0.307 − 0.394i)12-s + (0.770 − 0.637i)13-s + (0.0129 − 0.00749i)14-s + (−0.938 + 1.24i)15-s + (0.125 + 0.216i)16-s + (0.443 + 0.768i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 234 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.475 - 0.879i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 234 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.475 - 0.879i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(0.669505 + 1.12260i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.669505 + 1.12260i\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 + (0.258 - 0.965i)T \) |
| 3 | \( 1 + (-1.60 - 0.649i)T \) |
| 13 | \( 1 + (-2.77 + 2.29i)T \) |
| good | 5 | \( 1 + (0.901 - 3.36i)T + (-4.33 - 2.5i)T^{2} \) |
| 7 | \( 1 + (0.0396 + 0.0396i)T + 7iT^{2} \) |
| 11 | \( 1 + (4.98 + 1.33i)T + (9.52 + 5.5i)T^{2} \) |
| 17 | \( 1 + (-1.83 - 3.17i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (-0.677 - 0.181i)T + (16.4 + 9.5i)T^{2} \) |
| 23 | \( 1 - 5.78T + 23T^{2} \) |
| 29 | \( 1 + (-2.99 + 1.72i)T + (14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (5.75 + 1.54i)T + (26.8 + 15.5i)T^{2} \) |
| 37 | \( 1 + (-7.28 + 1.95i)T + (32.0 - 18.5i)T^{2} \) |
| 41 | \( 1 + (-2.13 - 2.13i)T + 41iT^{2} \) |
| 43 | \( 1 - 5.42iT - 43T^{2} \) |
| 47 | \( 1 + (1.29 + 4.82i)T + (-40.7 + 23.5i)T^{2} \) |
| 53 | \( 1 + 3.89iT - 53T^{2} \) |
| 59 | \( 1 + (0.272 + 1.01i)T + (-51.0 + 29.5i)T^{2} \) |
| 61 | \( 1 + 3.00T + 61T^{2} \) |
| 67 | \( 1 + (-7.69 + 7.69i)T - 67iT^{2} \) |
| 71 | \( 1 + (-3.98 + 14.8i)T + (-61.4 - 35.5i)T^{2} \) |
| 73 | \( 1 + (-5.86 - 5.86i)T + 73iT^{2} \) |
| 79 | \( 1 + (-2.76 + 4.79i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (15.4 - 4.13i)T + (71.8 - 41.5i)T^{2} \) |
| 89 | \( 1 + (-4.41 - 16.4i)T + (-77.0 + 44.5i)T^{2} \) |
| 97 | \( 1 + (1.62 - 1.62i)T - 97iT^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.92675220388165266903280596158, −10.94938471581652748063940731068, −10.62609371216340196767573754752, −9.576331974384415071785630532115, −8.152910617905726929458370683035, −7.80809505832119627564224826906, −6.65422734885767737278649933223, −5.35981167448514636470074481231, −3.69230829749689899855078097166, −2.77365679724432047358846026384,
1.17191456175733907787720455149, 2.78638290455167849389447593628, 4.22847795921141320193628853571, 5.25376231364198450196080335815, 7.29074419680388161734237902499, 8.167996660519851431544541329924, 8.943583252010918064891533546970, 9.637559262346501582392822301399, 10.95640914107627106397640511996, 12.12397102194215363995348033763