L(s) = 1 | + (−0.707 + 0.707i)2-s + (1.67 − 0.444i)3-s − 1.00i·4-s + (3.83 + 1.02i)5-s + (−0.869 + 1.49i)6-s + (−1.55 − 0.415i)7-s + (0.707 + 0.707i)8-s + (2.60 − 1.48i)9-s + (−3.43 + 1.98i)10-s + (−3.50 − 3.50i)11-s + (−0.444 − 1.67i)12-s + (−1.03 + 3.45i)13-s + (1.39 − 0.803i)14-s + (6.87 + 0.0145i)15-s − 1.00·16-s + (0.584 − 1.01i)17-s + ⋯ |
L(s) = 1 | + (−0.499 + 0.499i)2-s + (0.966 − 0.256i)3-s − 0.500i·4-s + (1.71 + 0.459i)5-s + (−0.354 + 0.611i)6-s + (−0.586 − 0.157i)7-s + (0.250 + 0.250i)8-s + (0.868 − 0.496i)9-s + (−1.08 + 0.627i)10-s + (−1.05 − 1.05i)11-s + (−0.128 − 0.483i)12-s + (−0.288 + 0.957i)13-s + (0.371 − 0.214i)14-s + (1.77 + 0.00375i)15-s − 0.250·16-s + (0.141 − 0.245i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 234 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.938 - 0.345i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 234 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.938 - 0.345i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.48255 + 0.264355i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.48255 + 0.264355i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.707 - 0.707i)T \) |
| 3 | \( 1 + (-1.67 + 0.444i)T \) |
| 13 | \( 1 + (1.03 - 3.45i)T \) |
good | 5 | \( 1 + (-3.83 - 1.02i)T + (4.33 + 2.5i)T^{2} \) |
| 7 | \( 1 + (1.55 + 0.415i)T + (6.06 + 3.5i)T^{2} \) |
| 11 | \( 1 + (3.50 + 3.50i)T + 11iT^{2} \) |
| 17 | \( 1 + (-0.584 + 1.01i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (4.16 - 1.11i)T + (16.4 - 9.5i)T^{2} \) |
| 23 | \( 1 + (-1.63 + 2.83i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 - 7.50iT - 29T^{2} \) |
| 31 | \( 1 + (1.94 - 7.25i)T + (-26.8 - 15.5i)T^{2} \) |
| 37 | \( 1 + (4.28 + 1.14i)T + (32.0 + 18.5i)T^{2} \) |
| 41 | \( 1 + (1.44 + 5.41i)T + (-35.5 + 20.5i)T^{2} \) |
| 43 | \( 1 + (0.770 - 0.444i)T + (21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (-2.43 + 0.653i)T + (40.7 - 23.5i)T^{2} \) |
| 53 | \( 1 + 6.60iT - 53T^{2} \) |
| 59 | \( 1 + (-5.81 - 5.81i)T + 59iT^{2} \) |
| 61 | \( 1 + (7.05 + 12.2i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (3.19 - 0.855i)T + (58.0 - 33.5i)T^{2} \) |
| 71 | \( 1 + (-0.942 - 3.51i)T + (-61.4 + 35.5i)T^{2} \) |
| 73 | \( 1 + (3.33 - 3.33i)T - 73iT^{2} \) |
| 79 | \( 1 + (1.16 - 2.02i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (2.82 + 10.5i)T + (-71.8 + 41.5i)T^{2} \) |
| 89 | \( 1 + (1.78 - 6.65i)T + (-77.0 - 44.5i)T^{2} \) |
| 97 | \( 1 + (1.65 - 6.17i)T + (-84.0 - 48.5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.66829401593755248949645317042, −10.68117167944282690393444898131, −10.17267753568737865203088541055, −9.140805977313498920091908534310, −8.568454091458252745490078295210, −7.05621346328667778594614068241, −6.45940698429993905504441488995, −5.24648075824000802976927669520, −3.11197061608121771681908992683, −1.92020018230108385184546902031,
1.98930521193740247269392832466, 2.81439928967093052849388242729, 4.64737747586945621350229126505, 5.90974694288548258249387328447, 7.42597538419669795384917964109, 8.472494198252959903913748272585, 9.551592097861042272063430286599, 9.893900900267100323883326787525, 10.61484545842654447147265775755, 12.52239603647713144419858402923