L(s) = 1 | + (−0.707 + 0.707i)2-s + (1.09 + 1.34i)3-s − 1.00i·4-s + (0.994 + 0.266i)5-s + (−1.72 − 0.172i)6-s + (0.339 + 0.0908i)7-s + (0.707 + 0.707i)8-s + (−0.593 + 2.94i)9-s + (−0.891 + 0.514i)10-s + (2.56 + 2.56i)11-s + (1.34 − 1.09i)12-s + (0.0241 − 3.60i)13-s + (−0.304 + 0.175i)14-s + (0.733 + 1.62i)15-s − 1.00·16-s + (−1.67 + 2.89i)17-s + ⋯ |
L(s) = 1 | + (−0.499 + 0.499i)2-s + (0.633 + 0.773i)3-s − 0.500i·4-s + (0.444 + 0.119i)5-s + (−0.703 − 0.0702i)6-s + (0.128 + 0.0343i)7-s + (0.250 + 0.250i)8-s + (−0.197 + 0.980i)9-s + (−0.281 + 0.162i)10-s + (0.774 + 0.774i)11-s + (0.386 − 0.316i)12-s + (0.00670 − 0.999i)13-s + (−0.0812 + 0.0469i)14-s + (0.189 + 0.419i)15-s − 0.250·16-s + (−0.405 + 0.702i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 234 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.0797 - 0.996i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 234 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.0797 - 0.996i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.925943 + 0.854785i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.925943 + 0.854785i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.707 - 0.707i)T \) |
| 3 | \( 1 + (-1.09 - 1.34i)T \) |
| 13 | \( 1 + (-0.0241 + 3.60i)T \) |
good | 5 | \( 1 + (-0.994 - 0.266i)T + (4.33 + 2.5i)T^{2} \) |
| 7 | \( 1 + (-0.339 - 0.0908i)T + (6.06 + 3.5i)T^{2} \) |
| 11 | \( 1 + (-2.56 - 2.56i)T + 11iT^{2} \) |
| 17 | \( 1 + (1.67 - 2.89i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (0.969 - 0.259i)T + (16.4 - 9.5i)T^{2} \) |
| 23 | \( 1 + (-0.735 + 1.27i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 - 5.82iT - 29T^{2} \) |
| 31 | \( 1 + (-1.48 + 5.54i)T + (-26.8 - 15.5i)T^{2} \) |
| 37 | \( 1 + (-4.96 - 1.33i)T + (32.0 + 18.5i)T^{2} \) |
| 41 | \( 1 + (2.41 + 9.02i)T + (-35.5 + 20.5i)T^{2} \) |
| 43 | \( 1 + (-2.37 + 1.36i)T + (21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (-8.18 + 2.19i)T + (40.7 - 23.5i)T^{2} \) |
| 53 | \( 1 + 2.67iT - 53T^{2} \) |
| 59 | \( 1 + (3.42 + 3.42i)T + 59iT^{2} \) |
| 61 | \( 1 + (2.86 + 4.95i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-14.5 + 3.90i)T + (58.0 - 33.5i)T^{2} \) |
| 71 | \( 1 + (1.53 + 5.74i)T + (-61.4 + 35.5i)T^{2} \) |
| 73 | \( 1 + (-2.47 + 2.47i)T - 73iT^{2} \) |
| 79 | \( 1 + (1.76 - 3.05i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (2.23 + 8.34i)T + (-71.8 + 41.5i)T^{2} \) |
| 89 | \( 1 + (2.68 - 10.0i)T + (-77.0 - 44.5i)T^{2} \) |
| 97 | \( 1 + (3.82 - 14.2i)T + (-84.0 - 48.5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.48929785841482736790763546123, −11.02448551524699784409956814022, −10.22444611187654467036514583267, −9.475514618008991854409688840423, −8.572130313288803638289759967352, −7.65668289946992788389127027698, −6.36851845575163992153159333233, −5.16559157811899310211207644119, −3.89841582326666725855230575125, −2.15228824800201216837612273747,
1.36566893642900256384397611381, 2.71942625461287716317767960298, 4.15767248111890587573259118153, 6.09049888882828651099430018853, 7.05615734812990329188744533098, 8.193552908891893628516803377513, 9.108902171129071638703062843696, 9.667725822911483745186025760455, 11.25832471239876758416408259277, 11.78232000109473388721451662265