L(s) = 1 | + 4·2-s + 16·4-s + 14·5-s − 170·7-s + 64·8-s + 56·10-s + 250·11-s − 169·13-s − 680·14-s + 256·16-s − 1.06e3·17-s − 78·19-s + 224·20-s + 1.00e3·22-s − 1.57e3·23-s − 2.92e3·25-s − 676·26-s − 2.72e3·28-s − 2.57e3·29-s − 8.65e3·31-s + 1.02e3·32-s − 4.24e3·34-s − 2.38e3·35-s + 1.09e4·37-s − 312·38-s + 896·40-s − 1.05e3·41-s + ⋯ |
L(s) = 1 | + 0.707·2-s + 1/2·4-s + 0.250·5-s − 1.31·7-s + 0.353·8-s + 0.177·10-s + 0.622·11-s − 0.277·13-s − 0.927·14-s + 1/4·16-s − 0.891·17-s − 0.0495·19-s + 0.125·20-s + 0.440·22-s − 0.621·23-s − 0.937·25-s − 0.196·26-s − 0.655·28-s − 0.569·29-s − 1.61·31-s + 0.176·32-s − 0.630·34-s − 0.328·35-s + 1.31·37-s − 0.0350·38-s + 0.0885·40-s − 0.0975·41-s + ⋯ |
Λ(s)=(=(234s/2ΓC(s)L(s)−Λ(6−s)
Λ(s)=(=(234s/2ΓC(s+5/2)L(s)−Λ(1−s)
Particular Values
L(3) |
= |
0 |
L(21) |
= |
0 |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1−p2T |
| 3 | 1 |
| 13 | 1+p2T |
good | 5 | 1−14T+p5T2 |
| 7 | 1+170T+p5T2 |
| 11 | 1−250T+p5T2 |
| 17 | 1+1062T+p5T2 |
| 19 | 1+78T+p5T2 |
| 23 | 1+1576T+p5T2 |
| 29 | 1+2578T+p5T2 |
| 31 | 1+8654T+p5T2 |
| 37 | 1−10986T+p5T2 |
| 41 | 1+1050T+p5T2 |
| 43 | 1+5900T+p5T2 |
| 47 | 1−5962T+p5T2 |
| 53 | 1+29046T+p5T2 |
| 59 | 1−13922T+p5T2 |
| 61 | 1+32882T+p5T2 |
| 67 | 1+69566T+p5T2 |
| 71 | 1−50542T+p5T2 |
| 73 | 1+46750T+p5T2 |
| 79 | 1+19348T+p5T2 |
| 83 | 1−87438T+p5T2 |
| 89 | 1+94170T+p5T2 |
| 97 | 1−182786T+p5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.96286446143680722125998040716, −9.811940174037741267880492204866, −9.110867397245520150626416888061, −7.55006747926477459292837023913, −6.50064778054188545329943562289, −5.80456699072340915757753756135, −4.31479327546449218348073586296, −3.29815951405891859265258186166, −1.96651068802625974033326410568, 0,
1.96651068802625974033326410568, 3.29815951405891859265258186166, 4.31479327546449218348073586296, 5.80456699072340915757753756135, 6.50064778054188545329943562289, 7.55006747926477459292837023913, 9.110867397245520150626416888061, 9.811940174037741267880492204866, 10.96286446143680722125998040716