Properties

Label 2-234-1.1-c5-0-23
Degree $2$
Conductor $234$
Sign $-1$
Analytic cond. $37.5298$
Root an. cond. $6.12615$
Motivic weight $5$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4·2-s + 16·4-s + 14·5-s − 170·7-s + 64·8-s + 56·10-s + 250·11-s − 169·13-s − 680·14-s + 256·16-s − 1.06e3·17-s − 78·19-s + 224·20-s + 1.00e3·22-s − 1.57e3·23-s − 2.92e3·25-s − 676·26-s − 2.72e3·28-s − 2.57e3·29-s − 8.65e3·31-s + 1.02e3·32-s − 4.24e3·34-s − 2.38e3·35-s + 1.09e4·37-s − 312·38-s + 896·40-s − 1.05e3·41-s + ⋯
L(s)  = 1  + 0.707·2-s + 1/2·4-s + 0.250·5-s − 1.31·7-s + 0.353·8-s + 0.177·10-s + 0.622·11-s − 0.277·13-s − 0.927·14-s + 1/4·16-s − 0.891·17-s − 0.0495·19-s + 0.125·20-s + 0.440·22-s − 0.621·23-s − 0.937·25-s − 0.196·26-s − 0.655·28-s − 0.569·29-s − 1.61·31-s + 0.176·32-s − 0.630·34-s − 0.328·35-s + 1.31·37-s − 0.0350·38-s + 0.0885·40-s − 0.0975·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 234 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 234 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(234\)    =    \(2 \cdot 3^{2} \cdot 13\)
Sign: $-1$
Analytic conductor: \(37.5298\)
Root analytic conductor: \(6.12615\)
Motivic weight: \(5\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 234,\ (\ :5/2),\ -1)\)

Particular Values

\(L(3)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - p^{2} T \)
3 \( 1 \)
13 \( 1 + p^{2} T \)
good5 \( 1 - 14 T + p^{5} T^{2} \)
7 \( 1 + 170 T + p^{5} T^{2} \)
11 \( 1 - 250 T + p^{5} T^{2} \)
17 \( 1 + 1062 T + p^{5} T^{2} \)
19 \( 1 + 78 T + p^{5} T^{2} \)
23 \( 1 + 1576 T + p^{5} T^{2} \)
29 \( 1 + 2578 T + p^{5} T^{2} \)
31 \( 1 + 8654 T + p^{5} T^{2} \)
37 \( 1 - 10986 T + p^{5} T^{2} \)
41 \( 1 + 1050 T + p^{5} T^{2} \)
43 \( 1 + 5900 T + p^{5} T^{2} \)
47 \( 1 - 5962 T + p^{5} T^{2} \)
53 \( 1 + 29046 T + p^{5} T^{2} \)
59 \( 1 - 13922 T + p^{5} T^{2} \)
61 \( 1 + 32882 T + p^{5} T^{2} \)
67 \( 1 + 69566 T + p^{5} T^{2} \)
71 \( 1 - 50542 T + p^{5} T^{2} \)
73 \( 1 + 46750 T + p^{5} T^{2} \)
79 \( 1 + 19348 T + p^{5} T^{2} \)
83 \( 1 - 87438 T + p^{5} T^{2} \)
89 \( 1 + 94170 T + p^{5} T^{2} \)
97 \( 1 - 182786 T + p^{5} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.96286446143680722125998040716, −9.811940174037741267880492204866, −9.110867397245520150626416888061, −7.55006747926477459292837023913, −6.50064778054188545329943562289, −5.80456699072340915757753756135, −4.31479327546449218348073586296, −3.29815951405891859265258186166, −1.96651068802625974033326410568, 0, 1.96651068802625974033326410568, 3.29815951405891859265258186166, 4.31479327546449218348073586296, 5.80456699072340915757753756135, 6.50064778054188545329943562289, 7.55006747926477459292837023913, 9.110867397245520150626416888061, 9.811940174037741267880492204866, 10.96286446143680722125998040716

Graph of the $Z$-function along the critical line