| L(s) = 1 | + i·5-s + (1 + i)7-s − i·9-s + (1 − i)13-s + (1 − i)23-s − 25-s + i·29-s + (−1 + i)35-s + 45-s + i·49-s + (−1 + i)53-s + 2i·59-s + (1 − i)63-s + (1 + i)65-s + (−1 − i)67-s + ⋯ |
| L(s) = 1 | + i·5-s + (1 + i)7-s − i·9-s + (1 − i)13-s + (1 − i)23-s − 25-s + i·29-s + (−1 + i)35-s + 45-s + i·49-s + (−1 + i)53-s + 2i·59-s + (1 − i)63-s + (1 + i)65-s + (−1 − i)67-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2320 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.850 - 0.525i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2320 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.850 - 0.525i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(1.401811179\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.401811179\) |
| \(L(1)\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 5 | \( 1 - iT \) |
| 29 | \( 1 - iT \) |
| good | 3 | \( 1 + iT^{2} \) |
| 7 | \( 1 + (-1 - i)T + iT^{2} \) |
| 11 | \( 1 - T^{2} \) |
| 13 | \( 1 + (-1 + i)T - iT^{2} \) |
| 17 | \( 1 - iT^{2} \) |
| 19 | \( 1 + T^{2} \) |
| 23 | \( 1 + (-1 + i)T - iT^{2} \) |
| 31 | \( 1 - T^{2} \) |
| 37 | \( 1 - iT^{2} \) |
| 41 | \( 1 - T^{2} \) |
| 43 | \( 1 + iT^{2} \) |
| 47 | \( 1 - iT^{2} \) |
| 53 | \( 1 + (1 - i)T - iT^{2} \) |
| 59 | \( 1 - 2iT - T^{2} \) |
| 61 | \( 1 - T^{2} \) |
| 67 | \( 1 + (1 + i)T + iT^{2} \) |
| 71 | \( 1 + T^{2} \) |
| 73 | \( 1 + iT^{2} \) |
| 79 | \( 1 + T^{2} \) |
| 83 | \( 1 + (1 - i)T - iT^{2} \) |
| 89 | \( 1 + T^{2} \) |
| 97 | \( 1 - iT^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.015432583997362538446415521958, −8.612465828442057916484860874500, −7.74737665535135326952538920317, −6.88164169238337573858967322056, −6.08971300989456679638358876554, −5.51086502258874555286809513481, −4.43042095618400575822405445764, −3.29673707933963177596307621610, −2.70974029638537184549547641060, −1.36727079939141460685565965729,
1.23695605757599285905606199819, 1.95213025970177672999325147755, 3.61283062905507850958908177967, 4.47420202041200721169318549589, 4.93573268044737551267005094315, 5.85621027300197611401860105262, 6.95260477128519008202926491481, 7.76710278560610859414036569307, 8.247372046037248566864009681600, 9.020120120962431484528078601030