| L(s) = 1 | − i·5-s + (1 − i)7-s + i·9-s + (1 + i)13-s + (1 + i)23-s − 25-s − i·29-s + (−1 − i)35-s + 45-s − i·49-s + (−1 − i)53-s − 2i·59-s + (1 + i)63-s + (1 − i)65-s + (−1 + i)67-s + ⋯ |
| L(s) = 1 | − i·5-s + (1 − i)7-s + i·9-s + (1 + i)13-s + (1 + i)23-s − 25-s − i·29-s + (−1 − i)35-s + 45-s − i·49-s + (−1 − i)53-s − 2i·59-s + (1 + i)63-s + (1 − i)65-s + (−1 + i)67-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2320 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.850 + 0.525i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2320 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.850 + 0.525i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(1.401811179\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.401811179\) |
| \(L(1)\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 5 | \( 1 + iT \) |
| 29 | \( 1 + iT \) |
| good | 3 | \( 1 - iT^{2} \) |
| 7 | \( 1 + (-1 + i)T - iT^{2} \) |
| 11 | \( 1 - T^{2} \) |
| 13 | \( 1 + (-1 - i)T + iT^{2} \) |
| 17 | \( 1 + iT^{2} \) |
| 19 | \( 1 + T^{2} \) |
| 23 | \( 1 + (-1 - i)T + iT^{2} \) |
| 31 | \( 1 - T^{2} \) |
| 37 | \( 1 + iT^{2} \) |
| 41 | \( 1 - T^{2} \) |
| 43 | \( 1 - iT^{2} \) |
| 47 | \( 1 + iT^{2} \) |
| 53 | \( 1 + (1 + i)T + iT^{2} \) |
| 59 | \( 1 + 2iT - T^{2} \) |
| 61 | \( 1 - T^{2} \) |
| 67 | \( 1 + (1 - i)T - iT^{2} \) |
| 71 | \( 1 + T^{2} \) |
| 73 | \( 1 - iT^{2} \) |
| 79 | \( 1 + T^{2} \) |
| 83 | \( 1 + (1 + i)T + iT^{2} \) |
| 89 | \( 1 + T^{2} \) |
| 97 | \( 1 + iT^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.020120120962431484528078601030, −8.247372046037248566864009681600, −7.76710278560610859414036569307, −6.95260477128519008202926491481, −5.85621027300197611401860105262, −4.93573268044737551267005094315, −4.47420202041200721169318549589, −3.61283062905507850958908177967, −1.95213025970177672999325147755, −1.23695605757599285905606199819,
1.36727079939141460685565965729, 2.70974029638537184549547641060, 3.29673707933963177596307621610, 4.43042095618400575822405445764, 5.51086502258874555286809513481, 6.08971300989456679638358876554, 6.88164169238337573858967322056, 7.74737665535135326952538920317, 8.612465828442057916484860874500, 9.015432583997362538446415521958