L(s) = 1 | + (0.707 − 0.707i)2-s − 1.00i·4-s + (−0.707 − 0.707i)8-s + (−0.707 − 0.707i)9-s − 1.00·16-s − 1.00·18-s + (1.41 − 1.41i)19-s + (−0.707 − 0.707i)25-s + (−0.707 + 0.707i)32-s + (−0.707 + 0.707i)36-s − 2.00i·38-s + (−1.41 − 1.41i)43-s + (−0.707 + 0.707i)49-s − 1.00·50-s + (1.41 + 1.41i)59-s + ⋯ |
L(s) = 1 | + (0.707 − 0.707i)2-s − 1.00i·4-s + (−0.707 − 0.707i)8-s + (−0.707 − 0.707i)9-s − 1.00·16-s − 1.00·18-s + (1.41 − 1.41i)19-s + (−0.707 − 0.707i)25-s + (−0.707 + 0.707i)32-s + (−0.707 + 0.707i)36-s − 2.00i·38-s + (−1.41 − 1.41i)43-s + (−0.707 + 0.707i)49-s − 1.00·50-s + (1.41 + 1.41i)59-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2312 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.651 + 0.758i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2312 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.651 + 0.758i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.483805527\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.483805527\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.707 + 0.707i)T \) |
| 17 | \( 1 \) |
good | 3 | \( 1 + (0.707 + 0.707i)T^{2} \) |
| 5 | \( 1 + (0.707 + 0.707i)T^{2} \) |
| 7 | \( 1 + (0.707 - 0.707i)T^{2} \) |
| 11 | \( 1 + (0.707 - 0.707i)T^{2} \) |
| 13 | \( 1 + T^{2} \) |
| 19 | \( 1 + (-1.41 + 1.41i)T - iT^{2} \) |
| 23 | \( 1 + (-0.707 + 0.707i)T^{2} \) |
| 29 | \( 1 + (0.707 + 0.707i)T^{2} \) |
| 31 | \( 1 + (-0.707 - 0.707i)T^{2} \) |
| 37 | \( 1 + (-0.707 - 0.707i)T^{2} \) |
| 41 | \( 1 + (-0.707 + 0.707i)T^{2} \) |
| 43 | \( 1 + (1.41 + 1.41i)T + iT^{2} \) |
| 47 | \( 1 + T^{2} \) |
| 53 | \( 1 + iT^{2} \) |
| 59 | \( 1 + (-1.41 - 1.41i)T + iT^{2} \) |
| 61 | \( 1 + (0.707 - 0.707i)T^{2} \) |
| 67 | \( 1 - 2T + T^{2} \) |
| 71 | \( 1 + (-0.707 - 0.707i)T^{2} \) |
| 73 | \( 1 + (-0.707 - 0.707i)T^{2} \) |
| 79 | \( 1 + (-0.707 + 0.707i)T^{2} \) |
| 83 | \( 1 + (-1.41 + 1.41i)T - iT^{2} \) |
| 89 | \( 1 - 2iT - T^{2} \) |
| 97 | \( 1 + (-0.707 - 0.707i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.154841269806431373905495220659, −8.308535154181795719986657528786, −7.12451743548171411674074350248, −6.45342254332649190769180668322, −5.55420115214309402874914595729, −4.95445696055809479436942117576, −3.87443872781623881171309099983, −3.13336257552396451774035909162, −2.26494508970013943867371643918, −0.799591560594038470159497330029,
1.91442494301080118043109880529, 3.13538491372726399786320898136, 3.76389476188217843196402056899, 5.00542919460130982611186626472, 5.43560006535886436062470569220, 6.24645980435625160952427942308, 7.12598726578523667847234930753, 8.057010221187542199659873024117, 8.196092084624579612833726988498, 9.410314279702778333505706039580