Properties

Label 2-2312-1.1-c3-0-132
Degree $2$
Conductor $2312$
Sign $1$
Analytic cond. $136.412$
Root an. cond. $11.6795$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 7.24·3-s + 22.1·5-s + 3.68·7-s + 25.5·9-s − 18.5·11-s − 13.7·13-s + 160.·15-s + 46.6·19-s + 26.6·21-s + 178.·23-s + 365.·25-s − 10.8·27-s + 135.·29-s + 115.·31-s − 134.·33-s + 81.4·35-s − 346.·37-s − 99.6·39-s + 255.·41-s − 470.·43-s + 564.·45-s − 233.·47-s − 329.·49-s − 96.0·53-s − 409.·55-s + 338.·57-s + 512.·59-s + ⋯
L(s)  = 1  + 1.39·3-s + 1.97·5-s + 0.198·7-s + 0.944·9-s − 0.507·11-s − 0.293·13-s + 2.76·15-s + 0.563·19-s + 0.277·21-s + 1.61·23-s + 2.92·25-s − 0.0772·27-s + 0.868·29-s + 0.671·31-s − 0.707·33-s + 0.393·35-s − 1.53·37-s − 0.409·39-s + 0.972·41-s − 1.66·43-s + 1.87·45-s − 0.725·47-s − 0.960·49-s − 0.249·53-s − 1.00·55-s + 0.785·57-s + 1.12·59-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2312 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2312 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2312\)    =    \(2^{3} \cdot 17^{2}\)
Sign: $1$
Analytic conductor: \(136.412\)
Root analytic conductor: \(11.6795\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2312,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(6.342437709\)
\(L(\frac12)\) \(\approx\) \(6.342437709\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
17 \( 1 \)
good3 \( 1 - 7.24T + 27T^{2} \)
5 \( 1 - 22.1T + 125T^{2} \)
7 \( 1 - 3.68T + 343T^{2} \)
11 \( 1 + 18.5T + 1.33e3T^{2} \)
13 \( 1 + 13.7T + 2.19e3T^{2} \)
19 \( 1 - 46.6T + 6.85e3T^{2} \)
23 \( 1 - 178.T + 1.21e4T^{2} \)
29 \( 1 - 135.T + 2.43e4T^{2} \)
31 \( 1 - 115.T + 2.97e4T^{2} \)
37 \( 1 + 346.T + 5.06e4T^{2} \)
41 \( 1 - 255.T + 6.89e4T^{2} \)
43 \( 1 + 470.T + 7.95e4T^{2} \)
47 \( 1 + 233.T + 1.03e5T^{2} \)
53 \( 1 + 96.0T + 1.48e5T^{2} \)
59 \( 1 - 512.T + 2.05e5T^{2} \)
61 \( 1 - 642.T + 2.26e5T^{2} \)
67 \( 1 + 121.T + 3.00e5T^{2} \)
71 \( 1 - 753.T + 3.57e5T^{2} \)
73 \( 1 + 155.T + 3.89e5T^{2} \)
79 \( 1 - 925.T + 4.93e5T^{2} \)
83 \( 1 + 162.T + 5.71e5T^{2} \)
89 \( 1 - 265.T + 7.04e5T^{2} \)
97 \( 1 - 179.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.721691617402958910988172187865, −8.148166505943733226714176618383, −7.05560305544605461329652300811, −6.47101684808963274785273500108, −5.28800977583407701192080262845, −4.93184268699976811957179548171, −3.34938255040175093939448985950, −2.70719742582032913554133005627, −2.02390140587143648046516470438, −1.13058157365654902056238151925, 1.13058157365654902056238151925, 2.02390140587143648046516470438, 2.70719742582032913554133005627, 3.34938255040175093939448985950, 4.93184268699976811957179548171, 5.28800977583407701192080262845, 6.47101684808963274785273500108, 7.05560305544605461329652300811, 8.148166505943733226714176618383, 8.721691617402958910988172187865

Graph of the $Z$-function along the critical line