Properties

Label 2-2312-1.1-c3-0-130
Degree $2$
Conductor $2312$
Sign $1$
Analytic cond. $136.412$
Root an. cond. $11.6795$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5.85·3-s + 10.3·5-s + 30.9·7-s + 7.31·9-s + 19.6·11-s − 5.88·13-s + 60.8·15-s − 4.34·19-s + 181.·21-s + 71.8·23-s − 17.2·25-s − 115.·27-s + 149.·29-s − 54.3·31-s + 115.·33-s + 321.·35-s + 176.·37-s − 34.4·39-s − 337.·41-s + 539.·43-s + 75.9·45-s − 122.·47-s + 614.·49-s − 560.·53-s + 204.·55-s − 25.4·57-s + 711.·59-s + ⋯
L(s)  = 1  + 1.12·3-s + 0.928·5-s + 1.67·7-s + 0.271·9-s + 0.539·11-s − 0.125·13-s + 1.04·15-s − 0.0524·19-s + 1.88·21-s + 0.651·23-s − 0.137·25-s − 0.821·27-s + 0.955·29-s − 0.314·31-s + 0.608·33-s + 1.55·35-s + 0.782·37-s − 0.141·39-s − 1.28·41-s + 1.91·43-s + 0.251·45-s − 0.380·47-s + 1.79·49-s − 1.45·53-s + 0.500·55-s − 0.0590·57-s + 1.57·59-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2312 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2312 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2312\)    =    \(2^{3} \cdot 17^{2}\)
Sign: $1$
Analytic conductor: \(136.412\)
Root analytic conductor: \(11.6795\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2312,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(5.679023456\)
\(L(\frac12)\) \(\approx\) \(5.679023456\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
17 \( 1 \)
good3 \( 1 - 5.85T + 27T^{2} \)
5 \( 1 - 10.3T + 125T^{2} \)
7 \( 1 - 30.9T + 343T^{2} \)
11 \( 1 - 19.6T + 1.33e3T^{2} \)
13 \( 1 + 5.88T + 2.19e3T^{2} \)
19 \( 1 + 4.34T + 6.85e3T^{2} \)
23 \( 1 - 71.8T + 1.21e4T^{2} \)
29 \( 1 - 149.T + 2.43e4T^{2} \)
31 \( 1 + 54.3T + 2.97e4T^{2} \)
37 \( 1 - 176.T + 5.06e4T^{2} \)
41 \( 1 + 337.T + 6.89e4T^{2} \)
43 \( 1 - 539.T + 7.95e4T^{2} \)
47 \( 1 + 122.T + 1.03e5T^{2} \)
53 \( 1 + 560.T + 1.48e5T^{2} \)
59 \( 1 - 711.T + 2.05e5T^{2} \)
61 \( 1 - 439.T + 2.26e5T^{2} \)
67 \( 1 - 519.T + 3.00e5T^{2} \)
71 \( 1 + 863.T + 3.57e5T^{2} \)
73 \( 1 + 589.T + 3.89e5T^{2} \)
79 \( 1 - 1.28e3T + 4.93e5T^{2} \)
83 \( 1 - 1.14e3T + 5.71e5T^{2} \)
89 \( 1 - 1.13e3T + 7.04e5T^{2} \)
97 \( 1 + 1.61e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.620785146530149133219139266592, −8.055434934007817236138776416814, −7.34355944412238085364747439547, −6.31739525514924479503921331176, −5.39700728871644352126814082922, −4.66720946926767566608652823214, −3.71456119266698824971079300107, −2.57287534707790538868113717021, −1.94915270506660320440963676340, −1.09450600114803223972364635033, 1.09450600114803223972364635033, 1.94915270506660320440963676340, 2.57287534707790538868113717021, 3.71456119266698824971079300107, 4.66720946926767566608652823214, 5.39700728871644352126814082922, 6.31739525514924479503921331176, 7.34355944412238085364747439547, 8.055434934007817236138776416814, 8.620785146530149133219139266592

Graph of the $Z$-function along the critical line