Properties

Label 2-2312-1.1-c3-0-127
Degree $2$
Conductor $2312$
Sign $1$
Analytic cond. $136.412$
Root an. cond. $11.6795$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 10.0·3-s + 10.2·5-s − 1.06·7-s + 74.5·9-s − 23.8·11-s − 64.6·13-s + 103.·15-s + 89.6·19-s − 10.7·21-s + 203.·23-s − 19.4·25-s + 479.·27-s − 14.3·29-s + 237.·31-s − 240.·33-s − 10.9·35-s − 21.8·37-s − 651.·39-s − 342.·41-s + 452.·43-s + 765.·45-s − 61.3·47-s − 341.·49-s + 268.·53-s − 244.·55-s + 903.·57-s − 221.·59-s + ⋯
L(s)  = 1  + 1.93·3-s + 0.918·5-s − 0.0576·7-s + 2.76·9-s − 0.652·11-s − 1.38·13-s + 1.78·15-s + 1.08·19-s − 0.111·21-s + 1.84·23-s − 0.155·25-s + 3.41·27-s − 0.0919·29-s + 1.37·31-s − 1.26·33-s − 0.0529·35-s − 0.0969·37-s − 2.67·39-s − 1.30·41-s + 1.60·43-s + 2.53·45-s − 0.190·47-s − 0.996·49-s + 0.696·53-s − 0.599·55-s + 2.09·57-s − 0.488·59-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2312 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2312 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2312\)    =    \(2^{3} \cdot 17^{2}\)
Sign: $1$
Analytic conductor: \(136.412\)
Root analytic conductor: \(11.6795\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2312,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(6.215454877\)
\(L(\frac12)\) \(\approx\) \(6.215454877\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
17 \( 1 \)
good3 \( 1 - 10.0T + 27T^{2} \)
5 \( 1 - 10.2T + 125T^{2} \)
7 \( 1 + 1.06T + 343T^{2} \)
11 \( 1 + 23.8T + 1.33e3T^{2} \)
13 \( 1 + 64.6T + 2.19e3T^{2} \)
19 \( 1 - 89.6T + 6.85e3T^{2} \)
23 \( 1 - 203.T + 1.21e4T^{2} \)
29 \( 1 + 14.3T + 2.43e4T^{2} \)
31 \( 1 - 237.T + 2.97e4T^{2} \)
37 \( 1 + 21.8T + 5.06e4T^{2} \)
41 \( 1 + 342.T + 6.89e4T^{2} \)
43 \( 1 - 452.T + 7.95e4T^{2} \)
47 \( 1 + 61.3T + 1.03e5T^{2} \)
53 \( 1 - 268.T + 1.48e5T^{2} \)
59 \( 1 + 221.T + 2.05e5T^{2} \)
61 \( 1 - 69.3T + 2.26e5T^{2} \)
67 \( 1 - 922.T + 3.00e5T^{2} \)
71 \( 1 - 631.T + 3.57e5T^{2} \)
73 \( 1 + 414.T + 3.89e5T^{2} \)
79 \( 1 + 1.29e3T + 4.93e5T^{2} \)
83 \( 1 - 910.T + 5.71e5T^{2} \)
89 \( 1 + 27.2T + 7.04e5T^{2} \)
97 \( 1 - 1.31e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.778447744769819951581376454592, −7.86602426317240436786924636127, −7.36310127151104516454299584804, −6.62216314113742316937751714218, −5.24772144425295776177660869051, −4.66077149000127336574143700031, −3.39840120642177752008485243929, −2.72328511150086934381549067151, −2.16108859706120079436498951766, −1.06090874448195701958170736339, 1.06090874448195701958170736339, 2.16108859706120079436498951766, 2.72328511150086934381549067151, 3.39840120642177752008485243929, 4.66077149000127336574143700031, 5.24772144425295776177660869051, 6.62216314113742316937751714218, 7.36310127151104516454299584804, 7.86602426317240436786924636127, 8.778447744769819951581376454592

Graph of the $Z$-function along the critical line