Properties

Label 2-2312-1.1-c3-0-0
Degree $2$
Conductor $2312$
Sign $1$
Analytic cond. $136.412$
Root an. cond. $11.6795$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.45·3-s + 4.99·5-s − 13.8·7-s − 20.9·9-s − 39.1·11-s − 68.8·13-s − 12.2·15-s − 73.2·19-s + 34.0·21-s − 110.·23-s − 100.·25-s + 117.·27-s − 70.1·29-s + 13.9·31-s + 96.1·33-s − 69.1·35-s − 201.·37-s + 169.·39-s − 358.·41-s − 548.·43-s − 104.·45-s + 264.·47-s − 151.·49-s + 632.·53-s − 195.·55-s + 180.·57-s + 186.·59-s + ⋯
L(s)  = 1  − 0.472·3-s + 0.446·5-s − 0.747·7-s − 0.776·9-s − 1.07·11-s − 1.46·13-s − 0.211·15-s − 0.885·19-s + 0.353·21-s − 1.00·23-s − 0.800·25-s + 0.840·27-s − 0.449·29-s + 0.0806·31-s + 0.507·33-s − 0.334·35-s − 0.893·37-s + 0.695·39-s − 1.36·41-s − 1.94·43-s − 0.346·45-s + 0.821·47-s − 0.440·49-s + 1.63·53-s − 0.479·55-s + 0.418·57-s + 0.411·59-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2312 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2312 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2312\)    =    \(2^{3} \cdot 17^{2}\)
Sign: $1$
Analytic conductor: \(136.412\)
Root analytic conductor: \(11.6795\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2312,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(4.080102129\times10^{-8}\)
\(L(\frac12)\) \(\approx\) \(4.080102129\times10^{-8}\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
17 \( 1 \)
good3 \( 1 + 2.45T + 27T^{2} \)
5 \( 1 - 4.99T + 125T^{2} \)
7 \( 1 + 13.8T + 343T^{2} \)
11 \( 1 + 39.1T + 1.33e3T^{2} \)
13 \( 1 + 68.8T + 2.19e3T^{2} \)
19 \( 1 + 73.2T + 6.85e3T^{2} \)
23 \( 1 + 110.T + 1.21e4T^{2} \)
29 \( 1 + 70.1T + 2.43e4T^{2} \)
31 \( 1 - 13.9T + 2.97e4T^{2} \)
37 \( 1 + 201.T + 5.06e4T^{2} \)
41 \( 1 + 358.T + 6.89e4T^{2} \)
43 \( 1 + 548.T + 7.95e4T^{2} \)
47 \( 1 - 264.T + 1.03e5T^{2} \)
53 \( 1 - 632.T + 1.48e5T^{2} \)
59 \( 1 - 186.T + 2.05e5T^{2} \)
61 \( 1 + 287.T + 2.26e5T^{2} \)
67 \( 1 + 4.09T + 3.00e5T^{2} \)
71 \( 1 - 674.T + 3.57e5T^{2} \)
73 \( 1 + 454.T + 3.89e5T^{2} \)
79 \( 1 + 442.T + 4.93e5T^{2} \)
83 \( 1 - 921.T + 5.71e5T^{2} \)
89 \( 1 + 104.T + 7.04e5T^{2} \)
97 \( 1 - 836.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.612531802076307359325013312506, −7.912382578926249787301593833141, −6.97410744233853558272628412298, −6.26918339558637062374891215809, −5.45521370177970728438079856320, −4.96615662999999564329261328437, −3.71432118830704856887809859402, −2.67827314639564065957109702543, −1.99861734004036248013845094125, −0.000084368435479017848774304608, 0.000084368435479017848774304608, 1.99861734004036248013845094125, 2.67827314639564065957109702543, 3.71432118830704856887809859402, 4.96615662999999564329261328437, 5.45521370177970728438079856320, 6.26918339558637062374891215809, 6.97410744233853558272628412298, 7.912382578926249787301593833141, 8.612531802076307359325013312506

Graph of the $Z$-function along the critical line