Properties

Label 2-2300-1.1-c3-0-6
Degree $2$
Conductor $2300$
Sign $1$
Analytic cond. $135.704$
Root an. cond. $11.6492$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5.72·3-s + 12.6·7-s + 5.77·9-s − 21.9·11-s − 37.2·13-s − 62.5·17-s − 137.·19-s − 72.2·21-s + 23·23-s + 121.·27-s − 71.8·29-s − 219.·31-s + 125.·33-s + 296.·37-s + 213.·39-s − 305.·41-s − 140.·43-s + 185.·47-s − 183.·49-s + 358.·51-s − 312.·53-s + 787.·57-s − 161.·59-s + 835.·61-s + 72.8·63-s + 24.5·67-s − 131.·69-s + ⋯
L(s)  = 1  − 1.10·3-s + 0.681·7-s + 0.213·9-s − 0.602·11-s − 0.795·13-s − 0.892·17-s − 1.66·19-s − 0.750·21-s + 0.208·23-s + 0.866·27-s − 0.460·29-s − 1.27·31-s + 0.663·33-s + 1.31·37-s + 0.876·39-s − 1.16·41-s − 0.497·43-s + 0.575·47-s − 0.536·49-s + 0.983·51-s − 0.809·53-s + 1.83·57-s − 0.356·59-s + 1.75·61-s + 0.145·63-s + 0.0446·67-s − 0.229·69-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2300 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2300 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2300\)    =    \(2^{2} \cdot 5^{2} \cdot 23\)
Sign: $1$
Analytic conductor: \(135.704\)
Root analytic conductor: \(11.6492\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2300,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(0.4409110678\)
\(L(\frac12)\) \(\approx\) \(0.4409110678\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
23 \( 1 - 23T \)
good3 \( 1 + 5.72T + 27T^{2} \)
7 \( 1 - 12.6T + 343T^{2} \)
11 \( 1 + 21.9T + 1.33e3T^{2} \)
13 \( 1 + 37.2T + 2.19e3T^{2} \)
17 \( 1 + 62.5T + 4.91e3T^{2} \)
19 \( 1 + 137.T + 6.85e3T^{2} \)
29 \( 1 + 71.8T + 2.43e4T^{2} \)
31 \( 1 + 219.T + 2.97e4T^{2} \)
37 \( 1 - 296.T + 5.06e4T^{2} \)
41 \( 1 + 305.T + 6.89e4T^{2} \)
43 \( 1 + 140.T + 7.95e4T^{2} \)
47 \( 1 - 185.T + 1.03e5T^{2} \)
53 \( 1 + 312.T + 1.48e5T^{2} \)
59 \( 1 + 161.T + 2.05e5T^{2} \)
61 \( 1 - 835.T + 2.26e5T^{2} \)
67 \( 1 - 24.5T + 3.00e5T^{2} \)
71 \( 1 + 973.T + 3.57e5T^{2} \)
73 \( 1 - 343.T + 3.89e5T^{2} \)
79 \( 1 - 1.21e3T + 4.93e5T^{2} \)
83 \( 1 + 749.T + 5.71e5T^{2} \)
89 \( 1 - 811.T + 7.04e5T^{2} \)
97 \( 1 + 1.02e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.574355608715721736946910834419, −7.894140619788950591688151681788, −6.94254094538361728095960502751, −6.31087977903949019421354922473, −5.39051046180898439826502517568, −4.86410614229300823997892146425, −4.07215054351940112943059584966, −2.63469635550856883830500519978, −1.76269930931831973926137615279, −0.30284011569512761445940855976, 0.30284011569512761445940855976, 1.76269930931831973926137615279, 2.63469635550856883830500519978, 4.07215054351940112943059584966, 4.86410614229300823997892146425, 5.39051046180898439826502517568, 6.31087977903949019421354922473, 6.94254094538361728095960502751, 7.894140619788950591688151681788, 8.574355608715721736946910834419

Graph of the $Z$-function along the critical line