Properties

Label 2-2300-1.1-c3-0-102
Degree $2$
Conductor $2300$
Sign $-1$
Analytic cond. $135.704$
Root an. cond. $11.6492$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 9.82·3-s + 0.312·7-s + 69.6·9-s − 42.5·11-s − 42.4·13-s − 41.1·17-s − 90.1·19-s + 3.07·21-s − 23·23-s + 418.·27-s − 277.·29-s + 197.·31-s − 418.·33-s − 11.8·37-s − 417.·39-s + 401.·41-s + 288.·43-s + 29.1·47-s − 342.·49-s − 404.·51-s − 459.·53-s − 886.·57-s − 340.·59-s − 683.·61-s + 21.7·63-s − 337.·67-s − 226.·69-s + ⋯
L(s)  = 1  + 1.89·3-s + 0.0168·7-s + 2.57·9-s − 1.16·11-s − 0.905·13-s − 0.587·17-s − 1.08·19-s + 0.0319·21-s − 0.208·23-s + 2.98·27-s − 1.77·29-s + 1.14·31-s − 2.20·33-s − 0.0528·37-s − 1.71·39-s + 1.52·41-s + 1.02·43-s + 0.0903·47-s − 0.999·49-s − 1.11·51-s − 1.19·53-s − 2.06·57-s − 0.751·59-s − 1.43·61-s + 0.0435·63-s − 0.615·67-s − 0.394·69-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2300 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2300 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2300\)    =    \(2^{2} \cdot 5^{2} \cdot 23\)
Sign: $-1$
Analytic conductor: \(135.704\)
Root analytic conductor: \(11.6492\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 2300,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
23 \( 1 + 23T \)
good3 \( 1 - 9.82T + 27T^{2} \)
7 \( 1 - 0.312T + 343T^{2} \)
11 \( 1 + 42.5T + 1.33e3T^{2} \)
13 \( 1 + 42.4T + 2.19e3T^{2} \)
17 \( 1 + 41.1T + 4.91e3T^{2} \)
19 \( 1 + 90.1T + 6.85e3T^{2} \)
29 \( 1 + 277.T + 2.43e4T^{2} \)
31 \( 1 - 197.T + 2.97e4T^{2} \)
37 \( 1 + 11.8T + 5.06e4T^{2} \)
41 \( 1 - 401.T + 6.89e4T^{2} \)
43 \( 1 - 288.T + 7.95e4T^{2} \)
47 \( 1 - 29.1T + 1.03e5T^{2} \)
53 \( 1 + 459.T + 1.48e5T^{2} \)
59 \( 1 + 340.T + 2.05e5T^{2} \)
61 \( 1 + 683.T + 2.26e5T^{2} \)
67 \( 1 + 337.T + 3.00e5T^{2} \)
71 \( 1 + 610.T + 3.57e5T^{2} \)
73 \( 1 + 1.16e3T + 3.89e5T^{2} \)
79 \( 1 - 776.T + 4.93e5T^{2} \)
83 \( 1 - 113.T + 5.71e5T^{2} \)
89 \( 1 - 1.04e3T + 7.04e5T^{2} \)
97 \( 1 + 1.33e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.102686528573972303050196451583, −7.78746416320556233181900490278, −7.09374099368623440921146276873, −6.00959748117769717872996540709, −4.70037938103469521445448120153, −4.18457882049177425344350699213, −3.02772029965330995271901925787, −2.47865608056401810769896843883, −1.70741734863882025214566352551, 0, 1.70741734863882025214566352551, 2.47865608056401810769896843883, 3.02772029965330995271901925787, 4.18457882049177425344350699213, 4.70037938103469521445448120153, 6.00959748117769717872996540709, 7.09374099368623440921146276873, 7.78746416320556233181900490278, 8.102686528573972303050196451583

Graph of the $Z$-function along the critical line