Properties

Label 2-230-115.104-c1-0-6
Degree $2$
Conductor $230$
Sign $0.955 + 0.295i$
Analytic cond. $1.83655$
Root an. cond. $1.35519$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.540 − 0.841i)2-s + (2.56 + 0.368i)3-s + (−0.415 + 0.909i)4-s + (2.23 − 0.0141i)5-s + (−1.07 − 2.35i)6-s + (−1.82 + 1.58i)7-s + (0.989 − 0.142i)8-s + (3.56 + 1.04i)9-s + (−1.22 − 1.87i)10-s + (1.25 + 0.808i)11-s + (−1.40 + 2.17i)12-s + (−3.06 − 2.65i)13-s + (2.31 + 0.680i)14-s + (5.73 + 0.788i)15-s + (−0.654 − 0.755i)16-s + (−5.62 + 2.56i)17-s + ⋯
L(s)  = 1  + (−0.382 − 0.594i)2-s + (1.48 + 0.212i)3-s + (−0.207 + 0.454i)4-s + (0.999 − 0.00633i)5-s + (−0.439 − 0.962i)6-s + (−0.690 + 0.597i)7-s + (0.349 − 0.0503i)8-s + (1.18 + 0.348i)9-s + (−0.386 − 0.592i)10-s + (0.379 + 0.243i)11-s + (−0.404 + 0.629i)12-s + (−0.850 − 0.736i)13-s + (0.619 + 0.181i)14-s + (1.48 + 0.203i)15-s + (−0.163 − 0.188i)16-s + (−1.36 + 0.622i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 230 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.955 + 0.295i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 230 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.955 + 0.295i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(230\)    =    \(2 \cdot 5 \cdot 23\)
Sign: $0.955 + 0.295i$
Analytic conductor: \(1.83655\)
Root analytic conductor: \(1.35519\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{230} (219, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 230,\ (\ :1/2),\ 0.955 + 0.295i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.61864 - 0.244691i\)
\(L(\frac12)\) \(\approx\) \(1.61864 - 0.244691i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (0.540 + 0.841i)T \)
5 \( 1 + (-2.23 + 0.0141i)T \)
23 \( 1 + (-3.56 + 3.21i)T \)
good3 \( 1 + (-2.56 - 0.368i)T + (2.87 + 0.845i)T^{2} \)
7 \( 1 + (1.82 - 1.58i)T + (0.996 - 6.92i)T^{2} \)
11 \( 1 + (-1.25 - 0.808i)T + (4.56 + 10.0i)T^{2} \)
13 \( 1 + (3.06 + 2.65i)T + (1.85 + 12.8i)T^{2} \)
17 \( 1 + (5.62 - 2.56i)T + (11.1 - 12.8i)T^{2} \)
19 \( 1 + (-0.291 + 0.638i)T + (-12.4 - 14.3i)T^{2} \)
29 \( 1 + (2.53 + 5.54i)T + (-18.9 + 21.9i)T^{2} \)
31 \( 1 + (0.649 + 4.51i)T + (-29.7 + 8.73i)T^{2} \)
37 \( 1 + (-1.60 + 5.45i)T + (-31.1 - 20.0i)T^{2} \)
41 \( 1 + (4.89 - 1.43i)T + (34.4 - 22.1i)T^{2} \)
43 \( 1 + (-4.99 - 0.718i)T + (41.2 + 12.1i)T^{2} \)
47 \( 1 - 4.52iT - 47T^{2} \)
53 \( 1 + (4.01 - 3.48i)T + (7.54 - 52.4i)T^{2} \)
59 \( 1 + (9.64 - 11.1i)T + (-8.39 - 58.3i)T^{2} \)
61 \( 1 + (-2.04 - 14.2i)T + (-58.5 + 17.1i)T^{2} \)
67 \( 1 + (1.77 + 2.75i)T + (-27.8 + 60.9i)T^{2} \)
71 \( 1 + (-9.51 + 6.11i)T + (29.4 - 64.5i)T^{2} \)
73 \( 1 + (-3.05 - 1.39i)T + (47.8 + 55.1i)T^{2} \)
79 \( 1 + (-1.54 + 1.77i)T + (-11.2 - 78.1i)T^{2} \)
83 \( 1 + (0.823 - 2.80i)T + (-69.8 - 44.8i)T^{2} \)
89 \( 1 + (0.515 - 3.58i)T + (-85.3 - 25.0i)T^{2} \)
97 \( 1 + (3.34 + 11.3i)T + (-81.6 + 52.4i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.47778769741653927707034255554, −10.90745818256319460014285891309, −9.861628390238204756396020308239, −9.280805583133769942420706682497, −8.692483330369834726762695137867, −7.45715266651279815883018166131, −6.08105274063563395054044976427, −4.36849800851549805395067320367, −2.86562216409464523109967665529, −2.21083232243369556706147168904, 1.91231656730616068047949782799, 3.31833838286434944346460610632, 4.94609555003827182336183009014, 6.68206612415911935994647047133, 7.10033498108854580242114102519, 8.492675294608260366602949972618, 9.351477915283201634831313071140, 9.677929303523433575743848166831, 11.00735655691083716467209755845, 12.72818333718737010491467697029

Graph of the $Z$-function along the critical line