Properties

Label 2-230-1.1-c3-0-10
Degree $2$
Conductor $230$
Sign $1$
Analytic cond. $13.5704$
Root an. cond. $3.68380$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·2-s + 7·3-s + 4·4-s + 5·5-s − 14·6-s + 20·7-s − 8·8-s + 22·9-s − 10·10-s + 6·11-s + 28·12-s + 47·13-s − 40·14-s + 35·15-s + 16·16-s − 132·17-s − 44·18-s + 146·19-s + 20·20-s + 140·21-s − 12·22-s + 23·23-s − 56·24-s + 25·25-s − 94·26-s − 35·27-s + 80·28-s + ⋯
L(s)  = 1  − 0.707·2-s + 1.34·3-s + 1/2·4-s + 0.447·5-s − 0.952·6-s + 1.07·7-s − 0.353·8-s + 0.814·9-s − 0.316·10-s + 0.164·11-s + 0.673·12-s + 1.00·13-s − 0.763·14-s + 0.602·15-s + 1/4·16-s − 1.88·17-s − 0.576·18-s + 1.76·19-s + 0.223·20-s + 1.45·21-s − 0.116·22-s + 0.208·23-s − 0.476·24-s + 1/5·25-s − 0.709·26-s − 0.249·27-s + 0.539·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 230 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 230 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(230\)    =    \(2 \cdot 5 \cdot 23\)
Sign: $1$
Analytic conductor: \(13.5704\)
Root analytic conductor: \(3.68380\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 230,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(2.472707715\)
\(L(\frac12)\) \(\approx\) \(2.472707715\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + p T \)
5 \( 1 - p T \)
23 \( 1 - p T \)
good3 \( 1 - 7 T + p^{3} T^{2} \)
7 \( 1 - 20 T + p^{3} T^{2} \)
11 \( 1 - 6 T + p^{3} T^{2} \)
13 \( 1 - 47 T + p^{3} T^{2} \)
17 \( 1 + 132 T + p^{3} T^{2} \)
19 \( 1 - 146 T + p^{3} T^{2} \)
29 \( 1 + 99 T + p^{3} T^{2} \)
31 \( 1 + 253 T + p^{3} T^{2} \)
37 \( 1 + 118 T + p^{3} T^{2} \)
41 \( 1 - 495 T + p^{3} T^{2} \)
43 \( 1 - 272 T + p^{3} T^{2} \)
47 \( 1 - 639 T + p^{3} T^{2} \)
53 \( 1 + 342 T + p^{3} T^{2} \)
59 \( 1 - 240 T + p^{3} T^{2} \)
61 \( 1 + 370 T + p^{3} T^{2} \)
67 \( 1 - 698 T + p^{3} T^{2} \)
71 \( 1 + 357 T + p^{3} T^{2} \)
73 \( 1 + 259 T + p^{3} T^{2} \)
79 \( 1 - 542 T + p^{3} T^{2} \)
83 \( 1 + 1248 T + p^{3} T^{2} \)
89 \( 1 + 828 T + p^{3} T^{2} \)
97 \( 1 - 992 T + p^{3} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.37077038113681963182557592306, −10.82444281105823496989068898624, −9.212075945774321871342889026596, −9.071279867799872453345479510799, −7.976394719154291149562640142669, −7.16335027409095941770976244763, −5.63166526039217538278909604408, −3.98698912411610601015955250214, −2.53871522810913860014886883857, −1.45467661833420215073522048284, 1.45467661833420215073522048284, 2.53871522810913860014886883857, 3.98698912411610601015955250214, 5.63166526039217538278909604408, 7.16335027409095941770976244763, 7.976394719154291149562640142669, 9.071279867799872453345479510799, 9.212075945774321871342889026596, 10.82444281105823496989068898624, 11.37077038113681963182557592306

Graph of the $Z$-function along the critical line