Properties

Label 2-23-1.1-c5-0-8
Degree $2$
Conductor $23$
Sign $-1$
Analytic cond. $3.68882$
Root an. cond. $1.92063$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5.31·2-s − 27.6·3-s − 3.75·4-s − 23.8·5-s − 147.·6-s − 11.7·7-s − 190.·8-s + 522.·9-s − 126.·10-s + 280.·11-s + 103.·12-s − 835.·13-s − 62.6·14-s + 660.·15-s − 889.·16-s − 1.80e3·17-s + 2.77e3·18-s + 2.35e3·19-s + 89.6·20-s + 325.·21-s + 1.49e3·22-s − 529·23-s + 5.25e3·24-s − 2.55e3·25-s − 4.43e3·26-s − 7.72e3·27-s + 44.2·28-s + ⋯
L(s)  = 1  + 0.939·2-s − 1.77·3-s − 0.117·4-s − 0.427·5-s − 1.66·6-s − 0.0908·7-s − 1.04·8-s + 2.14·9-s − 0.401·10-s + 0.699·11-s + 0.208·12-s − 1.37·13-s − 0.0854·14-s + 0.757·15-s − 0.868·16-s − 1.51·17-s + 2.01·18-s + 1.49·19-s + 0.0501·20-s + 0.161·21-s + 0.657·22-s − 0.208·23-s + 1.86·24-s − 0.817·25-s − 1.28·26-s − 2.03·27-s + 0.0106·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 23 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 23 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(23\)
Sign: $-1$
Analytic conductor: \(3.68882\)
Root analytic conductor: \(1.92063\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 23,\ (\ :5/2),\ -1)\)

Particular Values

\(L(3)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad23 \( 1 + 529T \)
good2 \( 1 - 5.31T + 32T^{2} \)
3 \( 1 + 27.6T + 243T^{2} \)
5 \( 1 + 23.8T + 3.12e3T^{2} \)
7 \( 1 + 11.7T + 1.68e4T^{2} \)
11 \( 1 - 280.T + 1.61e5T^{2} \)
13 \( 1 + 835.T + 3.71e5T^{2} \)
17 \( 1 + 1.80e3T + 1.41e6T^{2} \)
19 \( 1 - 2.35e3T + 2.47e6T^{2} \)
29 \( 1 + 1.20e3T + 2.05e7T^{2} \)
31 \( 1 + 3.39e3T + 2.86e7T^{2} \)
37 \( 1 - 8.35e3T + 6.93e7T^{2} \)
41 \( 1 + 1.07e4T + 1.15e8T^{2} \)
43 \( 1 + 803.T + 1.47e8T^{2} \)
47 \( 1 + 4.89e3T + 2.29e8T^{2} \)
53 \( 1 - 3.93e4T + 4.18e8T^{2} \)
59 \( 1 - 3.95e4T + 7.14e8T^{2} \)
61 \( 1 + 1.53e4T + 8.44e8T^{2} \)
67 \( 1 + 6.07e4T + 1.35e9T^{2} \)
71 \( 1 - 3.91e4T + 1.80e9T^{2} \)
73 \( 1 + 5.87e3T + 2.07e9T^{2} \)
79 \( 1 + 6.36e4T + 3.07e9T^{2} \)
83 \( 1 + 6.36e4T + 3.93e9T^{2} \)
89 \( 1 - 3.62e4T + 5.58e9T^{2} \)
97 \( 1 + 6.41e4T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−16.19095312274660929696368495159, −14.97426113238234915340638152515, −13.31973432665316582166657565741, −12.07487836008074491234570662027, −11.49103225239884902223432946200, −9.663283700016518715810819299042, −6.93201305117522424877228949487, −5.49408981938770963276211415011, −4.31223549562239653015692499360, 0, 4.31223549562239653015692499360, 5.49408981938770963276211415011, 6.93201305117522424877228949487, 9.663283700016518715810819299042, 11.49103225239884902223432946200, 12.07487836008074491234570662027, 13.31973432665316582166657565741, 14.97426113238234915340638152515, 16.19095312274660929696368495159

Graph of the $Z$-function along the critical line