Properties

Label 2-23-1.1-c3-0-4
Degree $2$
Conductor $23$
Sign $-1$
Analytic cond. $1.35704$
Root an. cond. $1.16492$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·2-s − 5·3-s − 4·4-s − 6·5-s + 10·6-s − 8·7-s + 24·8-s − 2·9-s + 12·10-s + 34·11-s + 20·12-s − 57·13-s + 16·14-s + 30·15-s − 16·16-s − 80·17-s + 4·18-s − 70·19-s + 24·20-s + 40·21-s − 68·22-s + 23·23-s − 120·24-s − 89·25-s + 114·26-s + 145·27-s + 32·28-s + ⋯
L(s)  = 1  − 0.707·2-s − 0.962·3-s − 1/2·4-s − 0.536·5-s + 0.680·6-s − 0.431·7-s + 1.06·8-s − 0.0740·9-s + 0.379·10-s + 0.931·11-s + 0.481·12-s − 1.21·13-s + 0.305·14-s + 0.516·15-s − 1/4·16-s − 1.14·17-s + 0.0523·18-s − 0.845·19-s + 0.268·20-s + 0.415·21-s − 0.658·22-s + 0.208·23-s − 1.02·24-s − 0.711·25-s + 0.859·26-s + 1.03·27-s + 0.215·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 23 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 23 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(23\)
Sign: $-1$
Analytic conductor: \(1.35704\)
Root analytic conductor: \(1.16492\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 23,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad23 \( 1 - p T \)
good2 \( 1 + p T + p^{3} T^{2} \)
3 \( 1 + 5 T + p^{3} T^{2} \)
5 \( 1 + 6 T + p^{3} T^{2} \)
7 \( 1 + 8 T + p^{3} T^{2} \)
11 \( 1 - 34 T + p^{3} T^{2} \)
13 \( 1 + 57 T + p^{3} T^{2} \)
17 \( 1 + 80 T + p^{3} T^{2} \)
19 \( 1 + 70 T + p^{3} T^{2} \)
29 \( 1 - 245 T + p^{3} T^{2} \)
31 \( 1 - 103 T + p^{3} T^{2} \)
37 \( 1 + 298 T + p^{3} T^{2} \)
41 \( 1 - 95 T + p^{3} T^{2} \)
43 \( 1 - 88 T + p^{3} T^{2} \)
47 \( 1 + 357 T + p^{3} T^{2} \)
53 \( 1 + 414 T + p^{3} T^{2} \)
59 \( 1 + 408 T + p^{3} T^{2} \)
61 \( 1 - 822 T + p^{3} T^{2} \)
67 \( 1 - 926 T + p^{3} T^{2} \)
71 \( 1 - 335 T + p^{3} T^{2} \)
73 \( 1 + 899 T + p^{3} T^{2} \)
79 \( 1 + 1322 T + p^{3} T^{2} \)
83 \( 1 + 36 T + p^{3} T^{2} \)
89 \( 1 + 460 T + p^{3} T^{2} \)
97 \( 1 + 964 T + p^{3} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−17.24025834356088088625422099288, −15.91568269315754517637383302708, −14.24824725063968658292713882395, −12.57363411656993674785053245336, −11.35826827100905508049444840313, −9.961523166511362664927358777418, −8.535712989536730575614351464131, −6.70152066336624718392450386020, −4.61063653410194406419918109269, 0, 4.61063653410194406419918109269, 6.70152066336624718392450386020, 8.535712989536730575614351464131, 9.961523166511362664927358777418, 11.35826827100905508049444840313, 12.57363411656993674785053245336, 14.24824725063968658292713882395, 15.91568269315754517637383302708, 17.24025834356088088625422099288

Graph of the $Z$-function along the critical line