Properties

Label 2-2299-1.1-c1-0-91
Degree $2$
Conductor $2299$
Sign $-1$
Analytic cond. $18.3576$
Root an. cond. $4.28457$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.65·2-s + 0.121·3-s + 5.04·4-s − 1.06·5-s − 0.323·6-s + 3.36·7-s − 8.08·8-s − 2.98·9-s + 2.81·10-s + 0.614·12-s + 2.15·13-s − 8.94·14-s − 0.129·15-s + 11.3·16-s − 3.67·17-s + 7.92·18-s + 19-s − 5.34·20-s + 0.410·21-s + 3.15·23-s − 0.985·24-s − 3.87·25-s − 5.73·26-s − 0.729·27-s + 16.9·28-s − 7.17·29-s + 0.342·30-s + ⋯
L(s)  = 1  − 1.87·2-s + 0.0703·3-s + 2.52·4-s − 0.474·5-s − 0.132·6-s + 1.27·7-s − 2.85·8-s − 0.995·9-s + 0.889·10-s + 0.177·12-s + 0.599·13-s − 2.38·14-s − 0.0333·15-s + 2.84·16-s − 0.890·17-s + 1.86·18-s + 0.229·19-s − 1.19·20-s + 0.0895·21-s + 0.657·23-s − 0.201·24-s − 0.775·25-s − 1.12·26-s − 0.140·27-s + 3.21·28-s − 1.33·29-s + 0.0626·30-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2299 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2299 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2299\)    =    \(11^{2} \cdot 19\)
Sign: $-1$
Analytic conductor: \(18.3576\)
Root analytic conductor: \(4.28457\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 2299,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad11 \( 1 \)
19 \( 1 - T \)
good2 \( 1 + 2.65T + 2T^{2} \)
3 \( 1 - 0.121T + 3T^{2} \)
5 \( 1 + 1.06T + 5T^{2} \)
7 \( 1 - 3.36T + 7T^{2} \)
13 \( 1 - 2.15T + 13T^{2} \)
17 \( 1 + 3.67T + 17T^{2} \)
23 \( 1 - 3.15T + 23T^{2} \)
29 \( 1 + 7.17T + 29T^{2} \)
31 \( 1 - 4.65T + 31T^{2} \)
37 \( 1 - 2.27T + 37T^{2} \)
41 \( 1 - 11.3T + 41T^{2} \)
43 \( 1 + 9.38T + 43T^{2} \)
47 \( 1 + 5.77T + 47T^{2} \)
53 \( 1 + 5.65T + 53T^{2} \)
59 \( 1 + 13.7T + 59T^{2} \)
61 \( 1 + 6.98T + 61T^{2} \)
67 \( 1 + 4.81T + 67T^{2} \)
71 \( 1 - 15.2T + 71T^{2} \)
73 \( 1 - 8.08T + 73T^{2} \)
79 \( 1 + 13.4T + 79T^{2} \)
83 \( 1 + 9.96T + 83T^{2} \)
89 \( 1 + 4.61T + 89T^{2} \)
97 \( 1 + 4.09T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.676612694677512953083915068974, −7.87761473852313613871523503189, −7.67903966968954923079573981189, −6.54730362102695662247860691318, −5.80987793145193828417157843917, −4.64856379336519166452380844919, −3.30512605211977651883884992439, −2.25423917546517488283456584322, −1.34265527918121425302683720678, 0, 1.34265527918121425302683720678, 2.25423917546517488283456584322, 3.30512605211977651883884992439, 4.64856379336519166452380844919, 5.80987793145193828417157843917, 6.54730362102695662247860691318, 7.67903966968954923079573981189, 7.87761473852313613871523503189, 8.676612694677512953083915068974

Graph of the $Z$-function along the critical line