Properties

Label 2-2268-63.16-c1-0-2
Degree $2$
Conductor $2268$
Sign $-0.0788 - 0.996i$
Analytic cond. $18.1100$
Root an. cond. $4.25559$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·5-s + (−2.5 − 0.866i)7-s + 2·11-s + (1.5 + 2.59i)13-s + (−4 − 6.92i)17-s + (0.5 − 0.866i)19-s + 8·23-s − 25-s + (−2 + 3.46i)29-s + (−1.5 + 2.59i)31-s + (5 + 1.73i)35-s + (0.5 − 0.866i)37-s + (−3 − 5.19i)41-s + (−5.5 + 9.52i)43-s + (−3 − 5.19i)47-s + ⋯
L(s)  = 1  − 0.894·5-s + (−0.944 − 0.327i)7-s + 0.603·11-s + (0.416 + 0.720i)13-s + (−0.970 − 1.68i)17-s + (0.114 − 0.198i)19-s + 1.66·23-s − 0.200·25-s + (−0.371 + 0.643i)29-s + (−0.269 + 0.466i)31-s + (0.845 + 0.292i)35-s + (0.0821 − 0.142i)37-s + (−0.468 − 0.811i)41-s + (−0.838 + 1.45i)43-s + (−0.437 − 0.757i)47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2268 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.0788 - 0.996i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2268 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.0788 - 0.996i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2268\)    =    \(2^{2} \cdot 3^{4} \cdot 7\)
Sign: $-0.0788 - 0.996i$
Analytic conductor: \(18.1100\)
Root analytic conductor: \(4.25559\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{2268} (541, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 2268,\ (\ :1/2),\ -0.0788 - 0.996i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.7085218836\)
\(L(\frac12)\) \(\approx\) \(0.7085218836\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 + (2.5 + 0.866i)T \)
good5 \( 1 + 2T + 5T^{2} \)
11 \( 1 - 2T + 11T^{2} \)
13 \( 1 + (-1.5 - 2.59i)T + (-6.5 + 11.2i)T^{2} \)
17 \( 1 + (4 + 6.92i)T + (-8.5 + 14.7i)T^{2} \)
19 \( 1 + (-0.5 + 0.866i)T + (-9.5 - 16.4i)T^{2} \)
23 \( 1 - 8T + 23T^{2} \)
29 \( 1 + (2 - 3.46i)T + (-14.5 - 25.1i)T^{2} \)
31 \( 1 + (1.5 - 2.59i)T + (-15.5 - 26.8i)T^{2} \)
37 \( 1 + (-0.5 + 0.866i)T + (-18.5 - 32.0i)T^{2} \)
41 \( 1 + (3 + 5.19i)T + (-20.5 + 35.5i)T^{2} \)
43 \( 1 + (5.5 - 9.52i)T + (-21.5 - 37.2i)T^{2} \)
47 \( 1 + (3 + 5.19i)T + (-23.5 + 40.7i)T^{2} \)
53 \( 1 + (-6 - 10.3i)T + (-26.5 + 45.8i)T^{2} \)
59 \( 1 + (2 - 3.46i)T + (-29.5 - 51.0i)T^{2} \)
61 \( 1 + (-3 - 5.19i)T + (-30.5 + 52.8i)T^{2} \)
67 \( 1 + (6.5 - 11.2i)T + (-33.5 - 58.0i)T^{2} \)
71 \( 1 + 10T + 71T^{2} \)
73 \( 1 + (-5.5 - 9.52i)T + (-36.5 + 63.2i)T^{2} \)
79 \( 1 + (-1.5 - 2.59i)T + (-39.5 + 68.4i)T^{2} \)
83 \( 1 + (1 - 1.73i)T + (-41.5 - 71.8i)T^{2} \)
89 \( 1 + (-44.5 - 77.0i)T^{2} \)
97 \( 1 + (5 - 8.66i)T + (-48.5 - 84.0i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.973017302976633538447223661831, −8.821002278736665241454543459309, −7.24895345953278475290929837114, −7.16446439614433590326069326971, −6.33355362055912958846654969489, −5.12458567629727289600565990837, −4.29965849132331583558380523214, −3.51980597016098720127641130295, −2.68493372320211054448495936094, −1.05230229789107324205565502663, 0.28818875713798665331183373293, 1.86101504196763701920412081834, 3.28079800147793032970158999794, 3.70662862261236053323045136262, 4.70302044051655467839329026336, 5.86078088106469058537955594109, 6.45086571606035390087381523018, 7.24123618063053075935385709595, 8.194469277496348809008106029039, 8.707854946353923443239681425848

Graph of the $Z$-function along the critical line