Properties

Label 2-2254-1.1-c3-0-72
Degree $2$
Conductor $2254$
Sign $1$
Analytic cond. $132.990$
Root an. cond. $11.5321$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·2-s − 1.85·3-s + 4·4-s + 2.80·5-s − 3.70·6-s + 8·8-s − 23.5·9-s + 5.61·10-s + 18.6·11-s − 7.41·12-s + 39.9·13-s − 5.20·15-s + 16·16-s − 34.3·17-s − 47.1·18-s − 60.1·19-s + 11.2·20-s + 37.2·22-s + 23·23-s − 14.8·24-s − 117.·25-s + 79.8·26-s + 93.7·27-s + 145.·29-s − 10.4·30-s + 94.1·31-s + 32·32-s + ⋯
L(s)  = 1  + 0.707·2-s − 0.356·3-s + 0.5·4-s + 0.251·5-s − 0.252·6-s + 0.353·8-s − 0.872·9-s + 0.177·10-s + 0.510·11-s − 0.178·12-s + 0.851·13-s − 0.0896·15-s + 0.250·16-s − 0.490·17-s − 0.617·18-s − 0.726·19-s + 0.125·20-s + 0.360·22-s + 0.208·23-s − 0.126·24-s − 0.936·25-s + 0.602·26-s + 0.667·27-s + 0.929·29-s − 0.0633·30-s + 0.545·31-s + 0.176·32-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2254 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2254 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2254\)    =    \(2 \cdot 7^{2} \cdot 23\)
Sign: $1$
Analytic conductor: \(132.990\)
Root analytic conductor: \(11.5321\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2254,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(3.118309627\)
\(L(\frac12)\) \(\approx\) \(3.118309627\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - 2T \)
7 \( 1 \)
23 \( 1 - 23T \)
good3 \( 1 + 1.85T + 27T^{2} \)
5 \( 1 - 2.80T + 125T^{2} \)
11 \( 1 - 18.6T + 1.33e3T^{2} \)
13 \( 1 - 39.9T + 2.19e3T^{2} \)
17 \( 1 + 34.3T + 4.91e3T^{2} \)
19 \( 1 + 60.1T + 6.85e3T^{2} \)
29 \( 1 - 145.T + 2.43e4T^{2} \)
31 \( 1 - 94.1T + 2.97e4T^{2} \)
37 \( 1 - 43.0T + 5.06e4T^{2} \)
41 \( 1 - 206.T + 6.89e4T^{2} \)
43 \( 1 - 153.T + 7.95e4T^{2} \)
47 \( 1 + 274.T + 1.03e5T^{2} \)
53 \( 1 + 609.T + 1.48e5T^{2} \)
59 \( 1 - 495.T + 2.05e5T^{2} \)
61 \( 1 - 818.T + 2.26e5T^{2} \)
67 \( 1 + 616.T + 3.00e5T^{2} \)
71 \( 1 - 975.T + 3.57e5T^{2} \)
73 \( 1 + 149.T + 3.89e5T^{2} \)
79 \( 1 + 272.T + 4.93e5T^{2} \)
83 \( 1 + 1.18T + 5.71e5T^{2} \)
89 \( 1 - 150.T + 7.04e5T^{2} \)
97 \( 1 - 1.66e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.586689439843412674585189739827, −7.965342821494651768256350216393, −6.71046542070324724752309980549, −6.27651010452455007833356329236, −5.61233191857496076655544097904, −4.67797844902374162534086551059, −3.88561065478443452598560419267, −2.91704602011248500386106659046, −1.95574870030225340385917761076, −0.71996486831932671289526236948, 0.71996486831932671289526236948, 1.95574870030225340385917761076, 2.91704602011248500386106659046, 3.88561065478443452598560419267, 4.67797844902374162534086551059, 5.61233191857496076655544097904, 6.27651010452455007833356329236, 6.71046542070324724752309980549, 7.965342821494651768256350216393, 8.586689439843412674585189739827

Graph of the $Z$-function along the critical line