Properties

Label 2-2254-1.1-c3-0-63
Degree $2$
Conductor $2254$
Sign $1$
Analytic cond. $132.990$
Root an. cond. $11.5321$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·2-s − 4.45·3-s + 4·4-s + 11.8·5-s − 8.91·6-s + 8·8-s − 7.11·9-s + 23.7·10-s − 10.2·11-s − 17.8·12-s − 43.4·13-s − 53.0·15-s + 16·16-s + 54.9·17-s − 14.2·18-s − 47.0·19-s + 47.5·20-s − 20.5·22-s − 23·23-s − 35.6·24-s + 16.2·25-s − 86.8·26-s + 152.·27-s + 245.·29-s − 106.·30-s − 287.·31-s + 32·32-s + ⋯
L(s)  = 1  + 0.707·2-s − 0.858·3-s + 0.5·4-s + 1.06·5-s − 0.606·6-s + 0.353·8-s − 0.263·9-s + 0.751·10-s − 0.281·11-s − 0.429·12-s − 0.926·13-s − 0.912·15-s + 0.250·16-s + 0.783·17-s − 0.186·18-s − 0.568·19-s + 0.531·20-s − 0.199·22-s − 0.208·23-s − 0.303·24-s + 0.130·25-s − 0.655·26-s + 1.08·27-s + 1.57·29-s − 0.645·30-s − 1.66·31-s + 0.176·32-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2254 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2254 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2254\)    =    \(2 \cdot 7^{2} \cdot 23\)
Sign: $1$
Analytic conductor: \(132.990\)
Root analytic conductor: \(11.5321\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2254,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(2.687966032\)
\(L(\frac12)\) \(\approx\) \(2.687966032\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - 2T \)
7 \( 1 \)
23 \( 1 + 23T \)
good3 \( 1 + 4.45T + 27T^{2} \)
5 \( 1 - 11.8T + 125T^{2} \)
11 \( 1 + 10.2T + 1.33e3T^{2} \)
13 \( 1 + 43.4T + 2.19e3T^{2} \)
17 \( 1 - 54.9T + 4.91e3T^{2} \)
19 \( 1 + 47.0T + 6.85e3T^{2} \)
29 \( 1 - 245.T + 2.43e4T^{2} \)
31 \( 1 + 287.T + 2.97e4T^{2} \)
37 \( 1 + 254.T + 5.06e4T^{2} \)
41 \( 1 - 35.0T + 6.89e4T^{2} \)
43 \( 1 - 257.T + 7.95e4T^{2} \)
47 \( 1 - 618.T + 1.03e5T^{2} \)
53 \( 1 + 349.T + 1.48e5T^{2} \)
59 \( 1 - 626.T + 2.05e5T^{2} \)
61 \( 1 - 626.T + 2.26e5T^{2} \)
67 \( 1 - 435.T + 3.00e5T^{2} \)
71 \( 1 + 727.T + 3.57e5T^{2} \)
73 \( 1 - 460.T + 3.89e5T^{2} \)
79 \( 1 - 322.T + 4.93e5T^{2} \)
83 \( 1 - 995.T + 5.71e5T^{2} \)
89 \( 1 - 1.16e3T + 7.04e5T^{2} \)
97 \( 1 - 549.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.728416715724896787267176274598, −7.68951111535851928062383269888, −6.82537744419262466086450128416, −6.12418720313706907276671635050, −5.40633388186350022835148430331, −5.08611693760333775693247204751, −3.91850517280330753103722650715, −2.73143894027716609531787670581, −2.00122966879933824463611880601, −0.67206942106985435977884088917, 0.67206942106985435977884088917, 2.00122966879933824463611880601, 2.73143894027716609531787670581, 3.91850517280330753103722650715, 5.08611693760333775693247204751, 5.40633388186350022835148430331, 6.12418720313706907276671635050, 6.82537744419262466086450128416, 7.68951111535851928062383269888, 8.728416715724896787267176274598

Graph of the $Z$-function along the critical line