Properties

Label 2-2254-1.1-c3-0-62
Degree $2$
Conductor $2254$
Sign $1$
Analytic cond. $132.990$
Root an. cond. $11.5321$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·2-s + 0.871·3-s + 4·4-s − 6.15·5-s + 1.74·6-s + 8·8-s − 26.2·9-s − 12.3·10-s + 25.5·11-s + 3.48·12-s − 47.4·13-s − 5.36·15-s + 16·16-s + 23.8·17-s − 52.4·18-s + 97.0·19-s − 24.6·20-s + 51.1·22-s + 23·23-s + 6.97·24-s − 87.0·25-s − 94.9·26-s − 46.4·27-s − 112.·29-s − 10.7·30-s + 278.·31-s + 32·32-s + ⋯
L(s)  = 1  + 0.707·2-s + 0.167·3-s + 0.5·4-s − 0.550·5-s + 0.118·6-s + 0.353·8-s − 0.971·9-s − 0.389·10-s + 0.700·11-s + 0.0838·12-s − 1.01·13-s − 0.0923·15-s + 0.250·16-s + 0.340·17-s − 0.687·18-s + 1.17·19-s − 0.275·20-s + 0.495·22-s + 0.208·23-s + 0.0593·24-s − 0.696·25-s − 0.716·26-s − 0.330·27-s − 0.720·29-s − 0.0653·30-s + 1.61·31-s + 0.176·32-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2254 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2254 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2254\)    =    \(2 \cdot 7^{2} \cdot 23\)
Sign: $1$
Analytic conductor: \(132.990\)
Root analytic conductor: \(11.5321\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2254,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(2.922283551\)
\(L(\frac12)\) \(\approx\) \(2.922283551\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - 2T \)
7 \( 1 \)
23 \( 1 - 23T \)
good3 \( 1 - 0.871T + 27T^{2} \)
5 \( 1 + 6.15T + 125T^{2} \)
11 \( 1 - 25.5T + 1.33e3T^{2} \)
13 \( 1 + 47.4T + 2.19e3T^{2} \)
17 \( 1 - 23.8T + 4.91e3T^{2} \)
19 \( 1 - 97.0T + 6.85e3T^{2} \)
29 \( 1 + 112.T + 2.43e4T^{2} \)
31 \( 1 - 278.T + 2.97e4T^{2} \)
37 \( 1 + 125.T + 5.06e4T^{2} \)
41 \( 1 - 1.95T + 6.89e4T^{2} \)
43 \( 1 + 185.T + 7.95e4T^{2} \)
47 \( 1 + 113.T + 1.03e5T^{2} \)
53 \( 1 - 277.T + 1.48e5T^{2} \)
59 \( 1 + 296.T + 2.05e5T^{2} \)
61 \( 1 - 274.T + 2.26e5T^{2} \)
67 \( 1 - 384.T + 3.00e5T^{2} \)
71 \( 1 - 353.T + 3.57e5T^{2} \)
73 \( 1 - 674.T + 3.89e5T^{2} \)
79 \( 1 + 769.T + 4.93e5T^{2} \)
83 \( 1 - 258.T + 5.71e5T^{2} \)
89 \( 1 - 361.T + 7.04e5T^{2} \)
97 \( 1 - 977.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.544550021405872174011766849892, −7.79658266550563981475707677066, −7.14807284641892223979929251987, −6.24978012513086123973951121043, −5.41042482328200710100651017592, −4.71322091402872781893673944173, −3.67417347112869556321606480442, −3.07036221545974912637559226865, −2.04811468182549762926941336420, −0.66729983869411878823686439242, 0.66729983869411878823686439242, 2.04811468182549762926941336420, 3.07036221545974912637559226865, 3.67417347112869556321606480442, 4.71322091402872781893673944173, 5.41042482328200710100651017592, 6.24978012513086123973951121043, 7.14807284641892223979929251987, 7.79658266550563981475707677066, 8.544550021405872174011766849892

Graph of the $Z$-function along the critical line