Properties

Label 2-2254-1.1-c3-0-56
Degree $2$
Conductor $2254$
Sign $1$
Analytic cond. $132.990$
Root an. cond. $11.5321$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·2-s + 8.71·3-s + 4·4-s − 10.2·5-s − 17.4·6-s − 8·8-s + 49.0·9-s + 20.4·10-s − 47.6·11-s + 34.8·12-s + 44.4·13-s − 88.9·15-s + 16·16-s − 24.4·17-s − 98.0·18-s − 116.·19-s − 40.8·20-s + 95.2·22-s + 23·23-s − 69.7·24-s − 20.9·25-s − 88.8·26-s + 192.·27-s − 57.1·29-s + 177.·30-s − 156.·31-s − 32·32-s + ⋯
L(s)  = 1  − 0.707·2-s + 1.67·3-s + 0.5·4-s − 0.912·5-s − 1.18·6-s − 0.353·8-s + 1.81·9-s + 0.645·10-s − 1.30·11-s + 0.839·12-s + 0.948·13-s − 1.53·15-s + 0.250·16-s − 0.349·17-s − 1.28·18-s − 1.40·19-s − 0.456·20-s + 0.923·22-s + 0.208·23-s − 0.593·24-s − 0.167·25-s − 0.670·26-s + 1.36·27-s − 0.366·29-s + 1.08·30-s − 0.906·31-s − 0.176·32-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2254 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2254 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2254\)    =    \(2 \cdot 7^{2} \cdot 23\)
Sign: $1$
Analytic conductor: \(132.990\)
Root analytic conductor: \(11.5321\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2254,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(2.067841560\)
\(L(\frac12)\) \(\approx\) \(2.067841560\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + 2T \)
7 \( 1 \)
23 \( 1 - 23T \)
good3 \( 1 - 8.71T + 27T^{2} \)
5 \( 1 + 10.2T + 125T^{2} \)
11 \( 1 + 47.6T + 1.33e3T^{2} \)
13 \( 1 - 44.4T + 2.19e3T^{2} \)
17 \( 1 + 24.4T + 4.91e3T^{2} \)
19 \( 1 + 116.T + 6.85e3T^{2} \)
29 \( 1 + 57.1T + 2.43e4T^{2} \)
31 \( 1 + 156.T + 2.97e4T^{2} \)
37 \( 1 - 131.T + 5.06e4T^{2} \)
41 \( 1 - 391.T + 6.89e4T^{2} \)
43 \( 1 - 144.T + 7.95e4T^{2} \)
47 \( 1 - 330.T + 1.03e5T^{2} \)
53 \( 1 - 222.T + 1.48e5T^{2} \)
59 \( 1 - 869.T + 2.05e5T^{2} \)
61 \( 1 + 182.T + 2.26e5T^{2} \)
67 \( 1 - 492.T + 3.00e5T^{2} \)
71 \( 1 - 1.08e3T + 3.57e5T^{2} \)
73 \( 1 - 1.10e3T + 3.89e5T^{2} \)
79 \( 1 + 58.3T + 4.93e5T^{2} \)
83 \( 1 + 1.17e3T + 5.71e5T^{2} \)
89 \( 1 - 49.9T + 7.04e5T^{2} \)
97 \( 1 + 548.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.555514672550973385478446212687, −8.049836288445257562898490781114, −7.57483918977593649559800555850, −6.77189670865659367195735236127, −5.59458438935453127320308434118, −4.17804949608739138510811342801, −3.71697083805300250641618935661, −2.62015889000868437957593674107, −2.07739927873703168846521341017, −0.63601936744905086107375945217, 0.63601936744905086107375945217, 2.07739927873703168846521341017, 2.62015889000868437957593674107, 3.71697083805300250641618935661, 4.17804949608739138510811342801, 5.59458438935453127320308434118, 6.77189670865659367195735236127, 7.57483918977593649559800555850, 8.049836288445257562898490781114, 8.555514672550973385478446212687

Graph of the $Z$-function along the critical line