Properties

Label 2-2254-1.1-c3-0-33
Degree $2$
Conductor $2254$
Sign $1$
Analytic cond. $132.990$
Root an. cond. $11.5321$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·2-s + 3.24·3-s + 4·4-s − 5.66·5-s − 6.49·6-s − 8·8-s − 16.4·9-s + 11.3·10-s − 25.6·11-s + 12.9·12-s + 16.1·13-s − 18.3·15-s + 16·16-s + 25.7·17-s + 32.8·18-s − 56.2·19-s − 22.6·20-s + 51.3·22-s + 23·23-s − 25.9·24-s − 92.9·25-s − 32.3·26-s − 141.·27-s + 219.·29-s + 36.7·30-s + 100.·31-s − 32·32-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.625·3-s + 0.5·4-s − 0.506·5-s − 0.442·6-s − 0.353·8-s − 0.609·9-s + 0.358·10-s − 0.703·11-s + 0.312·12-s + 0.345·13-s − 0.316·15-s + 0.250·16-s + 0.367·17-s + 0.430·18-s − 0.679·19-s − 0.253·20-s + 0.497·22-s + 0.208·23-s − 0.221·24-s − 0.743·25-s − 0.244·26-s − 1.00·27-s + 1.40·29-s + 0.223·30-s + 0.583·31-s − 0.176·32-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2254 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2254 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2254\)    =    \(2 \cdot 7^{2} \cdot 23\)
Sign: $1$
Analytic conductor: \(132.990\)
Root analytic conductor: \(11.5321\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2254,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(1.065791303\)
\(L(\frac12)\) \(\approx\) \(1.065791303\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + 2T \)
7 \( 1 \)
23 \( 1 - 23T \)
good3 \( 1 - 3.24T + 27T^{2} \)
5 \( 1 + 5.66T + 125T^{2} \)
11 \( 1 + 25.6T + 1.33e3T^{2} \)
13 \( 1 - 16.1T + 2.19e3T^{2} \)
17 \( 1 - 25.7T + 4.91e3T^{2} \)
19 \( 1 + 56.2T + 6.85e3T^{2} \)
29 \( 1 - 219.T + 2.43e4T^{2} \)
31 \( 1 - 100.T + 2.97e4T^{2} \)
37 \( 1 + 151.T + 5.06e4T^{2} \)
41 \( 1 + 277.T + 6.89e4T^{2} \)
43 \( 1 - 146.T + 7.95e4T^{2} \)
47 \( 1 + 509.T + 1.03e5T^{2} \)
53 \( 1 - 360.T + 1.48e5T^{2} \)
59 \( 1 + 66.5T + 2.05e5T^{2} \)
61 \( 1 + 71.1T + 2.26e5T^{2} \)
67 \( 1 + 77.6T + 3.00e5T^{2} \)
71 \( 1 + 592.T + 3.57e5T^{2} \)
73 \( 1 + 125.T + 3.89e5T^{2} \)
79 \( 1 + 658.T + 4.93e5T^{2} \)
83 \( 1 - 1.12e3T + 5.71e5T^{2} \)
89 \( 1 - 99.7T + 7.04e5T^{2} \)
97 \( 1 + 261.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.370848131366736543077371212968, −8.274008513827753900045628768247, −7.39878575262768386806998596925, −6.49823193081186354564047471033, −5.65534487887244704424521382694, −4.61212292198377991660406948209, −3.48173125629391957163520841663, −2.80903280393059756042739053016, −1.82220469328173264195004817339, −0.48280472632373449643976646562, 0.48280472632373449643976646562, 1.82220469328173264195004817339, 2.80903280393059756042739053016, 3.48173125629391957163520841663, 4.61212292198377991660406948209, 5.65534487887244704424521382694, 6.49823193081186354564047471033, 7.39878575262768386806998596925, 8.274008513827753900045628768247, 8.370848131366736543077371212968

Graph of the $Z$-function along the critical line