Properties

Label 2-2254-1.1-c3-0-222
Degree $2$
Conductor $2254$
Sign $-1$
Analytic cond. $132.990$
Root an. cond. $11.5321$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·2-s + 2.52·3-s + 4·4-s + 15.4·5-s + 5.05·6-s + 8·8-s − 20.6·9-s + 30.8·10-s + 16.2·11-s + 10.1·12-s − 50.2·13-s + 38.9·15-s + 16·16-s − 130.·17-s − 41.2·18-s − 85.0·19-s + 61.6·20-s + 32.4·22-s + 23·23-s + 20.2·24-s + 112.·25-s − 100.·26-s − 120.·27-s − 65.1·29-s + 77.8·30-s + 87.4·31-s + 32·32-s + ⋯
L(s)  = 1  + 0.707·2-s + 0.485·3-s + 0.5·4-s + 1.37·5-s + 0.343·6-s + 0.353·8-s − 0.763·9-s + 0.975·10-s + 0.445·11-s + 0.242·12-s − 1.07·13-s + 0.670·15-s + 0.250·16-s − 1.86·17-s − 0.540·18-s − 1.02·19-s + 0.689·20-s + 0.314·22-s + 0.208·23-s + 0.171·24-s + 0.902·25-s − 0.757·26-s − 0.857·27-s − 0.416·29-s + 0.473·30-s + 0.506·31-s + 0.176·32-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2254 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2254 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2254\)    =    \(2 \cdot 7^{2} \cdot 23\)
Sign: $-1$
Analytic conductor: \(132.990\)
Root analytic conductor: \(11.5321\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 2254,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - 2T \)
7 \( 1 \)
23 \( 1 - 23T \)
good3 \( 1 - 2.52T + 27T^{2} \)
5 \( 1 - 15.4T + 125T^{2} \)
11 \( 1 - 16.2T + 1.33e3T^{2} \)
13 \( 1 + 50.2T + 2.19e3T^{2} \)
17 \( 1 + 130.T + 4.91e3T^{2} \)
19 \( 1 + 85.0T + 6.85e3T^{2} \)
29 \( 1 + 65.1T + 2.43e4T^{2} \)
31 \( 1 - 87.4T + 2.97e4T^{2} \)
37 \( 1 + 341.T + 5.06e4T^{2} \)
41 \( 1 + 423.T + 6.89e4T^{2} \)
43 \( 1 - 487.T + 7.95e4T^{2} \)
47 \( 1 - 102.T + 1.03e5T^{2} \)
53 \( 1 + 565.T + 1.48e5T^{2} \)
59 \( 1 + 344.T + 2.05e5T^{2} \)
61 \( 1 + 203.T + 2.26e5T^{2} \)
67 \( 1 + 118.T + 3.00e5T^{2} \)
71 \( 1 - 449.T + 3.57e5T^{2} \)
73 \( 1 + 309.T + 3.89e5T^{2} \)
79 \( 1 - 274.T + 4.93e5T^{2} \)
83 \( 1 + 530.T + 5.71e5T^{2} \)
89 \( 1 + 775.T + 7.04e5T^{2} \)
97 \( 1 - 1.07e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.505116926750535387171163269641, −7.29883462053660060536548518330, −6.52092076377020047789663954465, −5.98226138148689350384203916448, −5.06713581757718677070683905932, −4.36556709995627433991798232724, −3.16774567851705146272050393467, −2.27321501754380247473395513884, −1.86344786070412688562537402386, 0, 1.86344786070412688562537402386, 2.27321501754380247473395513884, 3.16774567851705146272050393467, 4.36556709995627433991798232724, 5.06713581757718677070683905932, 5.98226138148689350384203916448, 6.52092076377020047789663954465, 7.29883462053660060536548518330, 8.505116926750535387171163269641

Graph of the $Z$-function along the critical line