Properties

Label 2-2254-1.1-c3-0-214
Degree $2$
Conductor $2254$
Sign $-1$
Analytic cond. $132.990$
Root an. cond. $11.5321$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·2-s + 3.34·3-s + 4·4-s + 2.71·5-s + 6.69·6-s + 8·8-s − 15.7·9-s + 5.43·10-s + 14.0·11-s + 13.3·12-s + 44.4·13-s + 9.09·15-s + 16·16-s − 107.·17-s − 31.5·18-s − 34.7·19-s + 10.8·20-s + 28.1·22-s + 23·23-s + 26.7·24-s − 117.·25-s + 88.9·26-s − 143.·27-s − 237.·29-s + 18.1·30-s − 132.·31-s + 32·32-s + ⋯
L(s)  = 1  + 0.707·2-s + 0.644·3-s + 0.5·4-s + 0.242·5-s + 0.455·6-s + 0.353·8-s − 0.584·9-s + 0.171·10-s + 0.385·11-s + 0.322·12-s + 0.948·13-s + 0.156·15-s + 0.250·16-s − 1.53·17-s − 0.413·18-s − 0.419·19-s + 0.121·20-s + 0.272·22-s + 0.208·23-s + 0.227·24-s − 0.940·25-s + 0.670·26-s − 1.02·27-s − 1.52·29-s + 0.110·30-s − 0.768·31-s + 0.176·32-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2254 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2254 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2254\)    =    \(2 \cdot 7^{2} \cdot 23\)
Sign: $-1$
Analytic conductor: \(132.990\)
Root analytic conductor: \(11.5321\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 2254,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - 2T \)
7 \( 1 \)
23 \( 1 - 23T \)
good3 \( 1 - 3.34T + 27T^{2} \)
5 \( 1 - 2.71T + 125T^{2} \)
11 \( 1 - 14.0T + 1.33e3T^{2} \)
13 \( 1 - 44.4T + 2.19e3T^{2} \)
17 \( 1 + 107.T + 4.91e3T^{2} \)
19 \( 1 + 34.7T + 6.85e3T^{2} \)
29 \( 1 + 237.T + 2.43e4T^{2} \)
31 \( 1 + 132.T + 2.97e4T^{2} \)
37 \( 1 - 58.0T + 5.06e4T^{2} \)
41 \( 1 + 72.2T + 6.89e4T^{2} \)
43 \( 1 + 97.4T + 7.95e4T^{2} \)
47 \( 1 + 258.T + 1.03e5T^{2} \)
53 \( 1 - 46.6T + 1.48e5T^{2} \)
59 \( 1 + 140.T + 2.05e5T^{2} \)
61 \( 1 + 17.3T + 2.26e5T^{2} \)
67 \( 1 + 685.T + 3.00e5T^{2} \)
71 \( 1 - 331.T + 3.57e5T^{2} \)
73 \( 1 - 943.T + 3.89e5T^{2} \)
79 \( 1 - 827.T + 4.93e5T^{2} \)
83 \( 1 - 53.7T + 5.71e5T^{2} \)
89 \( 1 + 276.T + 7.04e5T^{2} \)
97 \( 1 + 971.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.344775979109447336616525015039, −7.50973258221066059690800599800, −6.52776688194415953904371451983, −5.98924016781866491812530513408, −5.09383415993391420215853903416, −4.00431358244011187762390211229, −3.49329933454143081462594014410, −2.36524145039993992338508241892, −1.69322811706573966944354918287, 0, 1.69322811706573966944354918287, 2.36524145039993992338508241892, 3.49329933454143081462594014410, 4.00431358244011187762390211229, 5.09383415993391420215853903416, 5.98924016781866491812530513408, 6.52776688194415953904371451983, 7.50973258221066059690800599800, 8.344775979109447336616525015039

Graph of the $Z$-function along the critical line