Properties

Label 2-2254-1.1-c3-0-198
Degree $2$
Conductor $2254$
Sign $-1$
Analytic cond. $132.990$
Root an. cond. $11.5321$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·2-s + 8.18·3-s + 4·4-s − 0.929·5-s − 16.3·6-s − 8·8-s + 40.0·9-s + 1.85·10-s + 24.7·11-s + 32.7·12-s − 49.9·13-s − 7.61·15-s + 16·16-s − 47.0·17-s − 80.0·18-s + 28.1·19-s − 3.71·20-s − 49.5·22-s + 23·23-s − 65.4·24-s − 124.·25-s + 99.9·26-s + 106.·27-s − 83.2·29-s + 15.2·30-s + 104.·31-s − 32·32-s + ⋯
L(s)  = 1  − 0.707·2-s + 1.57·3-s + 0.5·4-s − 0.0831·5-s − 1.11·6-s − 0.353·8-s + 1.48·9-s + 0.0588·10-s + 0.679·11-s + 0.787·12-s − 1.06·13-s − 0.131·15-s + 0.250·16-s − 0.671·17-s − 1.04·18-s + 0.340·19-s − 0.0415·20-s − 0.480·22-s + 0.208·23-s − 0.557·24-s − 0.993·25-s + 0.753·26-s + 0.760·27-s − 0.533·29-s + 0.0926·30-s + 0.603·31-s − 0.176·32-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2254 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2254 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2254\)    =    \(2 \cdot 7^{2} \cdot 23\)
Sign: $-1$
Analytic conductor: \(132.990\)
Root analytic conductor: \(11.5321\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 2254,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + 2T \)
7 \( 1 \)
23 \( 1 - 23T \)
good3 \( 1 - 8.18T + 27T^{2} \)
5 \( 1 + 0.929T + 125T^{2} \)
11 \( 1 - 24.7T + 1.33e3T^{2} \)
13 \( 1 + 49.9T + 2.19e3T^{2} \)
17 \( 1 + 47.0T + 4.91e3T^{2} \)
19 \( 1 - 28.1T + 6.85e3T^{2} \)
29 \( 1 + 83.2T + 2.43e4T^{2} \)
31 \( 1 - 104.T + 2.97e4T^{2} \)
37 \( 1 + 131.T + 5.06e4T^{2} \)
41 \( 1 + 214.T + 6.89e4T^{2} \)
43 \( 1 + 0.790T + 7.95e4T^{2} \)
47 \( 1 - 45.0T + 1.03e5T^{2} \)
53 \( 1 + 643.T + 1.48e5T^{2} \)
59 \( 1 + 368.T + 2.05e5T^{2} \)
61 \( 1 - 82.7T + 2.26e5T^{2} \)
67 \( 1 + 47.0T + 3.00e5T^{2} \)
71 \( 1 - 321.T + 3.57e5T^{2} \)
73 \( 1 - 301.T + 3.89e5T^{2} \)
79 \( 1 + 648.T + 4.93e5T^{2} \)
83 \( 1 + 267.T + 5.71e5T^{2} \)
89 \( 1 - 27.0T + 7.04e5T^{2} \)
97 \( 1 + 233.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.381805012890302862020378692875, −7.67591931759141193450089761006, −7.12949052883476370369737499655, −6.25383663885034109095420892985, −4.93887517143472173969883520230, −3.94408239201415906885395128112, −3.12113021789760028680137735486, −2.26789688440956987972640254751, −1.50827829947494103147214638027, 0, 1.50827829947494103147214638027, 2.26789688440956987972640254751, 3.12113021789760028680137735486, 3.94408239201415906885395128112, 4.93887517143472173969883520230, 6.25383663885034109095420892985, 7.12949052883476370369737499655, 7.67591931759141193450089761006, 8.381805012890302862020378692875

Graph of the $Z$-function along the critical line