Properties

Label 2-2254-1.1-c3-0-189
Degree $2$
Conductor $2254$
Sign $1$
Analytic cond. $132.990$
Root an. cond. $11.5321$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·2-s + 9.59·3-s + 4·4-s + 12.3·5-s + 19.1·6-s + 8·8-s + 65.1·9-s + 24.6·10-s + 3.20·11-s + 38.3·12-s + 90.5·13-s + 118.·15-s + 16·16-s − 39.3·17-s + 130.·18-s − 31.2·19-s + 49.2·20-s + 6.41·22-s + 23·23-s + 76.7·24-s + 26.7·25-s + 181.·26-s + 366.·27-s − 100.·29-s + 236.·30-s + 101.·31-s + 32·32-s + ⋯
L(s)  = 1  + 0.707·2-s + 1.84·3-s + 0.5·4-s + 1.10·5-s + 1.30·6-s + 0.353·8-s + 2.41·9-s + 0.779·10-s + 0.0878·11-s + 0.923·12-s + 1.93·13-s + 2.03·15-s + 0.250·16-s − 0.561·17-s + 1.70·18-s − 0.377·19-s + 0.550·20-s + 0.0621·22-s + 0.208·23-s + 0.653·24-s + 0.213·25-s + 1.36·26-s + 2.61·27-s − 0.646·29-s + 1.43·30-s + 0.589·31-s + 0.176·32-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2254 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2254 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2254\)    =    \(2 \cdot 7^{2} \cdot 23\)
Sign: $1$
Analytic conductor: \(132.990\)
Root analytic conductor: \(11.5321\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2254,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(10.53705691\)
\(L(\frac12)\) \(\approx\) \(10.53705691\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - 2T \)
7 \( 1 \)
23 \( 1 - 23T \)
good3 \( 1 - 9.59T + 27T^{2} \)
5 \( 1 - 12.3T + 125T^{2} \)
11 \( 1 - 3.20T + 1.33e3T^{2} \)
13 \( 1 - 90.5T + 2.19e3T^{2} \)
17 \( 1 + 39.3T + 4.91e3T^{2} \)
19 \( 1 + 31.2T + 6.85e3T^{2} \)
29 \( 1 + 100.T + 2.43e4T^{2} \)
31 \( 1 - 101.T + 2.97e4T^{2} \)
37 \( 1 + 276.T + 5.06e4T^{2} \)
41 \( 1 + 428.T + 6.89e4T^{2} \)
43 \( 1 - 189.T + 7.95e4T^{2} \)
47 \( 1 + 461.T + 1.03e5T^{2} \)
53 \( 1 - 532.T + 1.48e5T^{2} \)
59 \( 1 + 535.T + 2.05e5T^{2} \)
61 \( 1 + 61.3T + 2.26e5T^{2} \)
67 \( 1 - 324.T + 3.00e5T^{2} \)
71 \( 1 - 339.T + 3.57e5T^{2} \)
73 \( 1 + 493.T + 3.89e5T^{2} \)
79 \( 1 + 1.02e3T + 4.93e5T^{2} \)
83 \( 1 + 967.T + 5.71e5T^{2} \)
89 \( 1 - 141.T + 7.04e5T^{2} \)
97 \( 1 - 533.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.658504228116426241188208050436, −8.142064796805728310691649074972, −7.01430337073653529760959652011, −6.42439820140798828214486529306, −5.52550366664317034129135501708, −4.37281976961911260461538252467, −3.62907308970069579032992160957, −2.94604309621929523759574464492, −1.93114087996383096355514159695, −1.45668517518567201767053958295, 1.45668517518567201767053958295, 1.93114087996383096355514159695, 2.94604309621929523759574464492, 3.62907308970069579032992160957, 4.37281976961911260461538252467, 5.52550366664317034129135501708, 6.42439820140798828214486529306, 7.01430337073653529760959652011, 8.142064796805728310691649074972, 8.658504228116426241188208050436

Graph of the $Z$-function along the critical line