Properties

Label 2-2254-1.1-c3-0-160
Degree $2$
Conductor $2254$
Sign $-1$
Analytic cond. $132.990$
Root an. cond. $11.5321$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·2-s − 3.34·3-s + 4·4-s − 2.71·5-s − 6.69·6-s + 8·8-s − 15.7·9-s − 5.43·10-s + 14.0·11-s − 13.3·12-s − 44.4·13-s + 9.09·15-s + 16·16-s + 107.·17-s − 31.5·18-s + 34.7·19-s − 10.8·20-s + 28.1·22-s + 23·23-s − 26.7·24-s − 117.·25-s − 88.9·26-s + 143.·27-s − 237.·29-s + 18.1·30-s + 132.·31-s + 32·32-s + ⋯
L(s)  = 1  + 0.707·2-s − 0.644·3-s + 0.5·4-s − 0.242·5-s − 0.455·6-s + 0.353·8-s − 0.584·9-s − 0.171·10-s + 0.385·11-s − 0.322·12-s − 0.948·13-s + 0.156·15-s + 0.250·16-s + 1.53·17-s − 0.413·18-s + 0.419·19-s − 0.121·20-s + 0.272·22-s + 0.208·23-s − 0.227·24-s − 0.940·25-s − 0.670·26-s + 1.02·27-s − 1.52·29-s + 0.110·30-s + 0.768·31-s + 0.176·32-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2254 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2254 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2254\)    =    \(2 \cdot 7^{2} \cdot 23\)
Sign: $-1$
Analytic conductor: \(132.990\)
Root analytic conductor: \(11.5321\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 2254,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - 2T \)
7 \( 1 \)
23 \( 1 - 23T \)
good3 \( 1 + 3.34T + 27T^{2} \)
5 \( 1 + 2.71T + 125T^{2} \)
11 \( 1 - 14.0T + 1.33e3T^{2} \)
13 \( 1 + 44.4T + 2.19e3T^{2} \)
17 \( 1 - 107.T + 4.91e3T^{2} \)
19 \( 1 - 34.7T + 6.85e3T^{2} \)
29 \( 1 + 237.T + 2.43e4T^{2} \)
31 \( 1 - 132.T + 2.97e4T^{2} \)
37 \( 1 - 58.0T + 5.06e4T^{2} \)
41 \( 1 - 72.2T + 6.89e4T^{2} \)
43 \( 1 + 97.4T + 7.95e4T^{2} \)
47 \( 1 - 258.T + 1.03e5T^{2} \)
53 \( 1 - 46.6T + 1.48e5T^{2} \)
59 \( 1 - 140.T + 2.05e5T^{2} \)
61 \( 1 - 17.3T + 2.26e5T^{2} \)
67 \( 1 + 685.T + 3.00e5T^{2} \)
71 \( 1 - 331.T + 3.57e5T^{2} \)
73 \( 1 + 943.T + 3.89e5T^{2} \)
79 \( 1 - 827.T + 4.93e5T^{2} \)
83 \( 1 + 53.7T + 5.71e5T^{2} \)
89 \( 1 - 276.T + 7.04e5T^{2} \)
97 \( 1 - 971.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.987321262919834974907828650195, −7.48220240716114558373000759566, −6.57376912796812470331052365630, −5.65053329984493228612841829198, −5.33986094764729337057179501080, −4.29338926312914648595229754414, −3.41675644311078445307659223894, −2.52870251468115595534059380810, −1.22200109590868485050062849448, 0, 1.22200109590868485050062849448, 2.52870251468115595534059380810, 3.41675644311078445307659223894, 4.29338926312914648595229754414, 5.33986094764729337057179501080, 5.65053329984493228612841829198, 6.57376912796812470331052365630, 7.48220240716114558373000759566, 7.987321262919834974907828650195

Graph of the $Z$-function along the critical line