Properties

Label 2-2254-1.1-c3-0-152
Degree $2$
Conductor $2254$
Sign $-1$
Analytic cond. $132.990$
Root an. cond. $11.5321$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·2-s − 8.39·3-s + 4·4-s + 1.25·5-s − 16.7·6-s + 8·8-s + 43.4·9-s + 2.50·10-s + 34.5·11-s − 33.5·12-s + 19.9·13-s − 10.4·15-s + 16·16-s − 12.2·17-s + 86.8·18-s − 149.·19-s + 5.00·20-s + 69.0·22-s + 23·23-s − 67.1·24-s − 123.·25-s + 39.9·26-s − 138.·27-s + 38.5·29-s − 20.9·30-s − 71.0·31-s + 32·32-s + ⋯
L(s)  = 1  + 0.707·2-s − 1.61·3-s + 0.5·4-s + 0.111·5-s − 1.14·6-s + 0.353·8-s + 1.60·9-s + 0.0790·10-s + 0.946·11-s − 0.807·12-s + 0.425·13-s − 0.180·15-s + 0.250·16-s − 0.174·17-s + 1.13·18-s − 1.80·19-s + 0.0559·20-s + 0.669·22-s + 0.208·23-s − 0.571·24-s − 0.987·25-s + 0.300·26-s − 0.983·27-s + 0.246·29-s − 0.127·30-s − 0.411·31-s + 0.176·32-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2254 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2254 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2254\)    =    \(2 \cdot 7^{2} \cdot 23\)
Sign: $-1$
Analytic conductor: \(132.990\)
Root analytic conductor: \(11.5321\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 2254,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - 2T \)
7 \( 1 \)
23 \( 1 - 23T \)
good3 \( 1 + 8.39T + 27T^{2} \)
5 \( 1 - 1.25T + 125T^{2} \)
11 \( 1 - 34.5T + 1.33e3T^{2} \)
13 \( 1 - 19.9T + 2.19e3T^{2} \)
17 \( 1 + 12.2T + 4.91e3T^{2} \)
19 \( 1 + 149.T + 6.85e3T^{2} \)
29 \( 1 - 38.5T + 2.43e4T^{2} \)
31 \( 1 + 71.0T + 2.97e4T^{2} \)
37 \( 1 - 82.1T + 5.06e4T^{2} \)
41 \( 1 - 217.T + 6.89e4T^{2} \)
43 \( 1 + 393.T + 7.95e4T^{2} \)
47 \( 1 - 504.T + 1.03e5T^{2} \)
53 \( 1 + 671.T + 1.48e5T^{2} \)
59 \( 1 - 16.0T + 2.05e5T^{2} \)
61 \( 1 - 507.T + 2.26e5T^{2} \)
67 \( 1 - 398.T + 3.00e5T^{2} \)
71 \( 1 - 93.7T + 3.57e5T^{2} \)
73 \( 1 - 15.9T + 3.89e5T^{2} \)
79 \( 1 - 592.T + 4.93e5T^{2} \)
83 \( 1 + 760.T + 5.71e5T^{2} \)
89 \( 1 - 852.T + 7.04e5T^{2} \)
97 \( 1 - 131.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.172181889247873671319201453514, −7.06767970565633565576157327903, −6.36604724965318712135729564390, −6.06555523318789143338555797205, −5.15859196756317326825155013453, −4.35330781321526751776575008847, −3.74977584355336041936692457368, −2.19876995775920328806401422627, −1.18104278346053763862240017287, 0, 1.18104278346053763862240017287, 2.19876995775920328806401422627, 3.74977584355336041936692457368, 4.35330781321526751776575008847, 5.15859196756317326825155013453, 6.06555523318789143338555797205, 6.36604724965318712135729564390, 7.06767970565633565576157327903, 8.172181889247873671319201453514

Graph of the $Z$-function along the critical line