Properties

Label 2-2254-1.1-c3-0-147
Degree $2$
Conductor $2254$
Sign $-1$
Analytic cond. $132.990$
Root an. cond. $11.5321$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·2-s − 7.18·3-s + 4·4-s + 20.3·5-s + 14.3·6-s − 8·8-s + 24.5·9-s − 40.6·10-s + 1.47·11-s − 28.7·12-s − 32.4·13-s − 146.·15-s + 16·16-s − 31.8·17-s − 49.1·18-s + 51.2·19-s + 81.3·20-s − 2.94·22-s + 23·23-s + 57.4·24-s + 288.·25-s + 64.9·26-s + 17.2·27-s − 39.6·29-s + 292.·30-s − 35.8·31-s − 32·32-s + ⋯
L(s)  = 1  − 0.707·2-s − 1.38·3-s + 0.5·4-s + 1.81·5-s + 0.977·6-s − 0.353·8-s + 0.910·9-s − 1.28·10-s + 0.0404·11-s − 0.691·12-s − 0.693·13-s − 2.51·15-s + 0.250·16-s − 0.454·17-s − 0.644·18-s + 0.619·19-s + 0.909·20-s − 0.0285·22-s + 0.208·23-s + 0.488·24-s + 2.30·25-s + 0.490·26-s + 0.123·27-s − 0.254·29-s + 1.77·30-s − 0.207·31-s − 0.176·32-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2254 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2254 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2254\)    =    \(2 \cdot 7^{2} \cdot 23\)
Sign: $-1$
Analytic conductor: \(132.990\)
Root analytic conductor: \(11.5321\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 2254,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + 2T \)
7 \( 1 \)
23 \( 1 - 23T \)
good3 \( 1 + 7.18T + 27T^{2} \)
5 \( 1 - 20.3T + 125T^{2} \)
11 \( 1 - 1.47T + 1.33e3T^{2} \)
13 \( 1 + 32.4T + 2.19e3T^{2} \)
17 \( 1 + 31.8T + 4.91e3T^{2} \)
19 \( 1 - 51.2T + 6.85e3T^{2} \)
29 \( 1 + 39.6T + 2.43e4T^{2} \)
31 \( 1 + 35.8T + 2.97e4T^{2} \)
37 \( 1 - 76.6T + 5.06e4T^{2} \)
41 \( 1 + 162.T + 6.89e4T^{2} \)
43 \( 1 + 336.T + 7.95e4T^{2} \)
47 \( 1 - 215.T + 1.03e5T^{2} \)
53 \( 1 + 304.T + 1.48e5T^{2} \)
59 \( 1 - 97.3T + 2.05e5T^{2} \)
61 \( 1 + 923.T + 2.26e5T^{2} \)
67 \( 1 - 604.T + 3.00e5T^{2} \)
71 \( 1 + 769.T + 3.57e5T^{2} \)
73 \( 1 - 400.T + 3.89e5T^{2} \)
79 \( 1 - 423.T + 4.93e5T^{2} \)
83 \( 1 + 437.T + 5.71e5T^{2} \)
89 \( 1 + 651.T + 7.04e5T^{2} \)
97 \( 1 - 610.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.456755783156349579338634414598, −7.23875880482781577991161321474, −6.62473007121011835757683212925, −5.96920412755300035481177332274, −5.36580245042089016495516414085, −4.70446511110882892327510367785, −2.97557446186758137968100033283, −1.96831207865695555260835850335, −1.14776719376126404069832093661, 0, 1.14776719376126404069832093661, 1.96831207865695555260835850335, 2.97557446186758137968100033283, 4.70446511110882892327510367785, 5.36580245042089016495516414085, 5.96920412755300035481177332274, 6.62473007121011835757683212925, 7.23875880482781577991161321474, 8.456755783156349579338634414598

Graph of the $Z$-function along the critical line