Properties

Label 2-2254-1.1-c3-0-128
Degree $2$
Conductor $2254$
Sign $-1$
Analytic cond. $132.990$
Root an. cond. $11.5321$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·2-s − 3.92·3-s + 4·4-s − 13.4·5-s − 7.84·6-s + 8·8-s − 11.6·9-s − 26.8·10-s − 46.1·11-s − 15.6·12-s + 72.7·13-s + 52.6·15-s + 16·16-s − 51.6·17-s − 23.2·18-s + 115.·19-s − 53.6·20-s − 92.3·22-s + 23·23-s − 31.3·24-s + 54.7·25-s + 145.·26-s + 151.·27-s − 12.8·29-s + 105.·30-s − 41.0·31-s + 32·32-s + ⋯
L(s)  = 1  + 0.707·2-s − 0.755·3-s + 0.5·4-s − 1.19·5-s − 0.533·6-s + 0.353·8-s − 0.429·9-s − 0.847·10-s − 1.26·11-s − 0.377·12-s + 1.55·13-s + 0.905·15-s + 0.250·16-s − 0.736·17-s − 0.303·18-s + 1.39·19-s − 0.599·20-s − 0.894·22-s + 0.208·23-s − 0.266·24-s + 0.437·25-s + 1.09·26-s + 1.07·27-s − 0.0819·29-s + 0.640·30-s − 0.237·31-s + 0.176·32-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2254 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2254 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2254\)    =    \(2 \cdot 7^{2} \cdot 23\)
Sign: $-1$
Analytic conductor: \(132.990\)
Root analytic conductor: \(11.5321\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 2254,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - 2T \)
7 \( 1 \)
23 \( 1 - 23T \)
good3 \( 1 + 3.92T + 27T^{2} \)
5 \( 1 + 13.4T + 125T^{2} \)
11 \( 1 + 46.1T + 1.33e3T^{2} \)
13 \( 1 - 72.7T + 2.19e3T^{2} \)
17 \( 1 + 51.6T + 4.91e3T^{2} \)
19 \( 1 - 115.T + 6.85e3T^{2} \)
29 \( 1 + 12.8T + 2.43e4T^{2} \)
31 \( 1 + 41.0T + 2.97e4T^{2} \)
37 \( 1 - 268.T + 5.06e4T^{2} \)
41 \( 1 + 204.T + 6.89e4T^{2} \)
43 \( 1 - 163.T + 7.95e4T^{2} \)
47 \( 1 - 259.T + 1.03e5T^{2} \)
53 \( 1 + 766.T + 1.48e5T^{2} \)
59 \( 1 - 584.T + 2.05e5T^{2} \)
61 \( 1 - 713.T + 2.26e5T^{2} \)
67 \( 1 - 1.06e3T + 3.00e5T^{2} \)
71 \( 1 + 659.T + 3.57e5T^{2} \)
73 \( 1 + 653.T + 3.89e5T^{2} \)
79 \( 1 + 1.29e3T + 4.93e5T^{2} \)
83 \( 1 + 91.8T + 5.71e5T^{2} \)
89 \( 1 + 532.T + 7.04e5T^{2} \)
97 \( 1 - 480.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.128795825342847254635489327642, −7.47884230272032063142866504657, −6.59794437274073031742806092226, −5.74464523215829570369759421311, −5.19167788746508557907479258928, −4.26654256048553818169413110370, −3.46004412349660840496265352374, −2.64580423317126872770516769717, −1.04389384707352477231635530498, 0, 1.04389384707352477231635530498, 2.64580423317126872770516769717, 3.46004412349660840496265352374, 4.26654256048553818169413110370, 5.19167788746508557907479258928, 5.74464523215829570369759421311, 6.59794437274073031742806092226, 7.47884230272032063142866504657, 8.128795825342847254635489327642

Graph of the $Z$-function along the critical line