Properties

Label 2-2254-1.1-c3-0-127
Degree $2$
Conductor $2254$
Sign $1$
Analytic cond. $132.990$
Root an. cond. $11.5321$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·2-s + 3.83·3-s + 4·4-s + 17.7·5-s + 7.66·6-s + 8·8-s − 12.3·9-s + 35.4·10-s − 12.8·11-s + 15.3·12-s + 1.76·13-s + 67.8·15-s + 16·16-s − 35.3·17-s − 24.6·18-s + 23.6·19-s + 70.8·20-s − 25.7·22-s + 23·23-s + 30.6·24-s + 188.·25-s + 3.52·26-s − 150.·27-s + 308.·29-s + 135.·30-s + 120.·31-s + 32·32-s + ⋯
L(s)  = 1  + 0.707·2-s + 0.737·3-s + 0.5·4-s + 1.58·5-s + 0.521·6-s + 0.353·8-s − 0.455·9-s + 1.11·10-s − 0.352·11-s + 0.368·12-s + 0.0375·13-s + 1.16·15-s + 0.250·16-s − 0.504·17-s − 0.322·18-s + 0.285·19-s + 0.791·20-s − 0.249·22-s + 0.208·23-s + 0.260·24-s + 1.50·25-s + 0.0265·26-s − 1.07·27-s + 1.97·29-s + 0.825·30-s + 0.699·31-s + 0.176·32-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2254 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2254 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2254\)    =    \(2 \cdot 7^{2} \cdot 23\)
Sign: $1$
Analytic conductor: \(132.990\)
Root analytic conductor: \(11.5321\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2254,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(6.660453322\)
\(L(\frac12)\) \(\approx\) \(6.660453322\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - 2T \)
7 \( 1 \)
23 \( 1 - 23T \)
good3 \( 1 - 3.83T + 27T^{2} \)
5 \( 1 - 17.7T + 125T^{2} \)
11 \( 1 + 12.8T + 1.33e3T^{2} \)
13 \( 1 - 1.76T + 2.19e3T^{2} \)
17 \( 1 + 35.3T + 4.91e3T^{2} \)
19 \( 1 - 23.6T + 6.85e3T^{2} \)
29 \( 1 - 308.T + 2.43e4T^{2} \)
31 \( 1 - 120.T + 2.97e4T^{2} \)
37 \( 1 - 437.T + 5.06e4T^{2} \)
41 \( 1 + 468.T + 6.89e4T^{2} \)
43 \( 1 + 374.T + 7.95e4T^{2} \)
47 \( 1 - 409.T + 1.03e5T^{2} \)
53 \( 1 - 25.6T + 1.48e5T^{2} \)
59 \( 1 - 637.T + 2.05e5T^{2} \)
61 \( 1 - 624.T + 2.26e5T^{2} \)
67 \( 1 - 376.T + 3.00e5T^{2} \)
71 \( 1 - 435.T + 3.57e5T^{2} \)
73 \( 1 - 988.T + 3.89e5T^{2} \)
79 \( 1 - 524.T + 4.93e5T^{2} \)
83 \( 1 - 1.08e3T + 5.71e5T^{2} \)
89 \( 1 - 133.T + 7.04e5T^{2} \)
97 \( 1 + 1.16e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.573588224306806317350195736679, −8.103533064680461215620058804231, −6.79433233339043765491548721557, −6.34176438910266933260076732180, −5.42040676504365972335607125670, −4.87137671051040712925231759977, −3.64111925812091992747728191041, −2.58031437528567326535797481957, −2.32731510775758383792327888219, −1.03391425444622521761545393662, 1.03391425444622521761545393662, 2.32731510775758383792327888219, 2.58031437528567326535797481957, 3.64111925812091992747728191041, 4.87137671051040712925231759977, 5.42040676504365972335607125670, 6.34176438910266933260076732180, 6.79433233339043765491548721557, 8.103533064680461215620058804231, 8.573588224306806317350195736679

Graph of the $Z$-function along the critical line