Properties

Label 2-2254-1.1-c3-0-12
Degree $2$
Conductor $2254$
Sign $1$
Analytic cond. $132.990$
Root an. cond. $11.5321$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·2-s − 3.39·3-s + 4·4-s + 2.94·5-s + 6.79·6-s − 8·8-s − 15.4·9-s − 5.88·10-s + 7.18·11-s − 13.5·12-s − 35.5·13-s − 9.99·15-s + 16·16-s − 89.7·17-s + 30.9·18-s − 40.9·19-s + 11.7·20-s − 14.3·22-s + 23·23-s + 27.1·24-s − 116.·25-s + 71.0·26-s + 144.·27-s − 231.·29-s + 19.9·30-s + 110.·31-s − 32·32-s + ⋯
L(s)  = 1  − 0.707·2-s − 0.653·3-s + 0.5·4-s + 0.263·5-s + 0.462·6-s − 0.353·8-s − 0.573·9-s − 0.186·10-s + 0.197·11-s − 0.326·12-s − 0.757·13-s − 0.171·15-s + 0.250·16-s − 1.28·17-s + 0.405·18-s − 0.494·19-s + 0.131·20-s − 0.139·22-s + 0.208·23-s + 0.231·24-s − 0.930·25-s + 0.535·26-s + 1.02·27-s − 1.48·29-s + 0.121·30-s + 0.638·31-s − 0.176·32-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2254 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2254 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2254\)    =    \(2 \cdot 7^{2} \cdot 23\)
Sign: $1$
Analytic conductor: \(132.990\)
Root analytic conductor: \(11.5321\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2254,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(0.3260133939\)
\(L(\frac12)\) \(\approx\) \(0.3260133939\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + 2T \)
7 \( 1 \)
23 \( 1 - 23T \)
good3 \( 1 + 3.39T + 27T^{2} \)
5 \( 1 - 2.94T + 125T^{2} \)
11 \( 1 - 7.18T + 1.33e3T^{2} \)
13 \( 1 + 35.5T + 2.19e3T^{2} \)
17 \( 1 + 89.7T + 4.91e3T^{2} \)
19 \( 1 + 40.9T + 6.85e3T^{2} \)
29 \( 1 + 231.T + 2.43e4T^{2} \)
31 \( 1 - 110.T + 2.97e4T^{2} \)
37 \( 1 + 243.T + 5.06e4T^{2} \)
41 \( 1 + 189.T + 6.89e4T^{2} \)
43 \( 1 + 206.T + 7.95e4T^{2} \)
47 \( 1 + 313.T + 1.03e5T^{2} \)
53 \( 1 - 215.T + 1.48e5T^{2} \)
59 \( 1 - 503.T + 2.05e5T^{2} \)
61 \( 1 - 113.T + 2.26e5T^{2} \)
67 \( 1 - 211.T + 3.00e5T^{2} \)
71 \( 1 - 308.T + 3.57e5T^{2} \)
73 \( 1 + 759.T + 3.89e5T^{2} \)
79 \( 1 - 565.T + 4.93e5T^{2} \)
83 \( 1 + 311.T + 5.71e5T^{2} \)
89 \( 1 - 817.T + 7.04e5T^{2} \)
97 \( 1 + 325.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.722919514304358952421349460388, −8.038339225549199606206652871231, −6.98368633822266722984578692967, −6.50515231678961706370287415639, −5.60907012166551082336841100133, −4.90253945786082916041625616364, −3.74755013513557145157726711667, −2.53175944401139099158262797595, −1.73606600656466193643962849693, −0.28301859113048722292036697510, 0.28301859113048722292036697510, 1.73606600656466193643962849693, 2.53175944401139099158262797595, 3.74755013513557145157726711667, 4.90253945786082916041625616364, 5.60907012166551082336841100133, 6.50515231678961706370287415639, 6.98368633822266722984578692967, 8.038339225549199606206652871231, 8.722919514304358952421349460388

Graph of the $Z$-function along the critical line