L(s) = 1 | + 1.73·3-s + i·5-s + (−1.73 − 2i)7-s + 0.267i·11-s + 0.464i·13-s + 1.73i·15-s − 6.46i·17-s − 6·19-s + (−2.99 − 3.46i)21-s − 1.46i·23-s − 25-s − 5.19·27-s − 7.92·29-s − 6·31-s + 0.464i·33-s + ⋯ |
L(s) = 1 | + 1.00·3-s + 0.447i·5-s + (−0.654 − 0.755i)7-s + 0.0807i·11-s + 0.128i·13-s + 0.447i·15-s − 1.56i·17-s − 1.37·19-s + (−0.654 − 0.755i)21-s − 0.305i·23-s − 0.200·25-s − 1.00·27-s − 1.47·29-s − 1.07·31-s + 0.0807i·33-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2240 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.755 + 0.654i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2240 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.755 + 0.654i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.8477418654\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.8477418654\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 - iT \) |
| 7 | \( 1 + (1.73 + 2i)T \) |
good | 3 | \( 1 - 1.73T + 3T^{2} \) |
| 11 | \( 1 - 0.267iT - 11T^{2} \) |
| 13 | \( 1 - 0.464iT - 13T^{2} \) |
| 17 | \( 1 + 6.46iT - 17T^{2} \) |
| 19 | \( 1 + 6T + 19T^{2} \) |
| 23 | \( 1 + 1.46iT - 23T^{2} \) |
| 29 | \( 1 + 7.92T + 29T^{2} \) |
| 31 | \( 1 + 6T + 31T^{2} \) |
| 37 | \( 1 - 9.46T + 37T^{2} \) |
| 41 | \( 1 + 3.46iT - 41T^{2} \) |
| 43 | \( 1 - 2iT - 43T^{2} \) |
| 47 | \( 1 - 1.73T + 47T^{2} \) |
| 53 | \( 1 + 2T + 53T^{2} \) |
| 59 | \( 1 - 3.46T + 59T^{2} \) |
| 61 | \( 1 + 9.46iT - 61T^{2} \) |
| 67 | \( 1 + 3.46iT - 67T^{2} \) |
| 71 | \( 1 + 7.46iT - 71T^{2} \) |
| 73 | \( 1 - 12.9iT - 73T^{2} \) |
| 79 | \( 1 + 14.6iT - 79T^{2} \) |
| 83 | \( 1 + 15.4T + 83T^{2} \) |
| 89 | \( 1 - 2.53iT - 89T^{2} \) |
| 97 | \( 1 + 13.3iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.887744990885076882450898373049, −7.84672459810502548910562164830, −7.32830973633121985485286168168, −6.58217256337883346606065863023, −5.67525194776271474614683888872, −4.44039300845477006303835967867, −3.66677072509821674448823513781, −2.87098738860332728352054479488, −2.05101466215346182066550663208, −0.22766335112949957398417250885,
1.77202516625312643078175045202, 2.55993227511688063479947578651, 3.59314970336008862572585348162, 4.21994340056006105512705195320, 5.66588584184211456407633101647, 5.98520033957741246974910471758, 7.13121044925108297351342547441, 8.141851898283146868111630241156, 8.520298909053633238558095195655, 9.212248970566593225947262951186