L(s) = 1 | − 1.73·3-s + i·5-s + (1.73 − 2i)7-s + 3.73i·11-s − 6.46i·13-s − 1.73i·15-s + 0.464i·17-s − 6·19-s + (−2.99 + 3.46i)21-s + 5.46i·23-s − 25-s + 5.19·27-s + 5.92·29-s − 6·31-s − 6.46i·33-s + ⋯ |
L(s) = 1 | − 1.00·3-s + 0.447i·5-s + (0.654 − 0.755i)7-s + 1.12i·11-s − 1.79i·13-s − 0.447i·15-s + 0.112i·17-s − 1.37·19-s + (−0.654 + 0.755i)21-s + 1.13i·23-s − 0.200·25-s + 1.00·27-s + 1.10·29-s − 1.07·31-s − 1.12i·33-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2240 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.755 - 0.654i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2240 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.755 - 0.654i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.3685791289\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.3685791289\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 - iT \) |
| 7 | \( 1 + (-1.73 + 2i)T \) |
good | 3 | \( 1 + 1.73T + 3T^{2} \) |
| 11 | \( 1 - 3.73iT - 11T^{2} \) |
| 13 | \( 1 + 6.46iT - 13T^{2} \) |
| 17 | \( 1 - 0.464iT - 17T^{2} \) |
| 19 | \( 1 + 6T + 19T^{2} \) |
| 23 | \( 1 - 5.46iT - 23T^{2} \) |
| 29 | \( 1 - 5.92T + 29T^{2} \) |
| 31 | \( 1 + 6T + 31T^{2} \) |
| 37 | \( 1 - 2.53T + 37T^{2} \) |
| 41 | \( 1 - 3.46iT - 41T^{2} \) |
| 43 | \( 1 - 2iT - 43T^{2} \) |
| 47 | \( 1 + 1.73T + 47T^{2} \) |
| 53 | \( 1 + 2T + 53T^{2} \) |
| 59 | \( 1 + 3.46T + 59T^{2} \) |
| 61 | \( 1 + 2.53iT - 61T^{2} \) |
| 67 | \( 1 - 3.46iT - 67T^{2} \) |
| 71 | \( 1 + 0.535iT - 71T^{2} \) |
| 73 | \( 1 + 0.928iT - 73T^{2} \) |
| 79 | \( 1 - 2.66iT - 79T^{2} \) |
| 83 | \( 1 + 8.53T + 83T^{2} \) |
| 89 | \( 1 - 9.46iT - 89T^{2} \) |
| 97 | \( 1 - 7.39iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.558196989192345444743719136962, −8.299347985411437980330598795799, −7.76314507000293703751203923726, −6.95397503220518694671502161872, −6.19632323610922851707554678945, −5.34292051295322053213082154634, −4.71838031222893140900605262488, −3.73124216282188634410428064241, −2.56037198850972309905948826480, −1.23549733927614951666535601286,
0.15518732293845840692107735632, 1.61391233479248321389818645081, 2.67357958875964586914011678103, 4.18478198315412092916500842794, 4.75636472115034884278332276984, 5.66058028228676386185515788969, 6.25233915471763944964639059085, 6.90434183720621310289871998565, 8.293788988184397033245474664579, 8.662472561421651133782709742641