Properties

Label 2-2240-1.1-c3-0-92
Degree $2$
Conductor $2240$
Sign $-1$
Analytic cond. $132.164$
Root an. cond. $11.4962$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4.65·3-s + 5·5-s + 7·7-s − 5.31·9-s − 52.2·11-s − 30.6·13-s − 23.2·15-s + 37.2·17-s + 80.2·19-s − 32.5·21-s − 25.8·23-s + 25·25-s + 150.·27-s − 20.9·29-s + 314.·31-s + 243.·33-s + 35·35-s − 197.·37-s + 142.·39-s + 11.3·41-s − 33.8·43-s − 26.5·45-s + 361.·47-s + 49·49-s − 173.·51-s − 153.·53-s − 261.·55-s + ⋯
L(s)  = 1  − 0.896·3-s + 0.447·5-s + 0.377·7-s − 0.196·9-s − 1.43·11-s − 0.654·13-s − 0.400·15-s + 0.531·17-s + 0.968·19-s − 0.338·21-s − 0.234·23-s + 0.200·25-s + 1.07·27-s − 0.134·29-s + 1.82·31-s + 1.28·33-s + 0.169·35-s − 0.875·37-s + 0.586·39-s + 0.0432·41-s − 0.119·43-s − 0.0880·45-s + 1.12·47-s + 0.142·49-s − 0.475·51-s − 0.396·53-s − 0.640·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2240 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2240 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2240\)    =    \(2^{6} \cdot 5 \cdot 7\)
Sign: $-1$
Analytic conductor: \(132.164\)
Root analytic conductor: \(11.4962\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 2240,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 - 5T \)
7 \( 1 - 7T \)
good3 \( 1 + 4.65T + 27T^{2} \)
11 \( 1 + 52.2T + 1.33e3T^{2} \)
13 \( 1 + 30.6T + 2.19e3T^{2} \)
17 \( 1 - 37.2T + 4.91e3T^{2} \)
19 \( 1 - 80.2T + 6.85e3T^{2} \)
23 \( 1 + 25.8T + 1.21e4T^{2} \)
29 \( 1 + 20.9T + 2.43e4T^{2} \)
31 \( 1 - 314.T + 2.97e4T^{2} \)
37 \( 1 + 197.T + 5.06e4T^{2} \)
41 \( 1 - 11.3T + 6.89e4T^{2} \)
43 \( 1 + 33.8T + 7.95e4T^{2} \)
47 \( 1 - 361.T + 1.03e5T^{2} \)
53 \( 1 + 153.T + 1.48e5T^{2} \)
59 \( 1 + 616T + 2.05e5T^{2} \)
61 \( 1 + 15.2T + 2.26e5T^{2} \)
67 \( 1 + 166.T + 3.00e5T^{2} \)
71 \( 1 - 952T + 3.57e5T^{2} \)
73 \( 1 + 148.T + 3.89e5T^{2} \)
79 \( 1 + 857.T + 4.93e5T^{2} \)
83 \( 1 - 660.T + 5.71e5T^{2} \)
89 \( 1 + 45.7T + 7.04e5T^{2} \)
97 \( 1 - 1.68e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.125286261140618081257650107513, −7.59512288980893705168916775926, −6.61941344608889513758108178889, −5.73631326788966652286486854484, −5.22933164781465375010330711293, −4.63354435332125459815721739072, −3.14001595784909242193341411675, −2.37364060778673079378996164899, −1.05175938807326084276434690972, 0, 1.05175938807326084276434690972, 2.37364060778673079378996164899, 3.14001595784909242193341411675, 4.63354435332125459815721739072, 5.22933164781465375010330711293, 5.73631326788966652286486854484, 6.61941344608889513758108178889, 7.59512288980893705168916775926, 8.125286261140618081257650107513

Graph of the $Z$-function along the critical line