L(s) = 1 | + (−0.480 + 1.33i)2-s + (−0.758 − 0.988i)3-s + (−1.53 − 1.27i)4-s + (0.171 + 0.131i)5-s + (1.67 − 0.534i)6-s + (1.01 + 2.44i)7-s + (2.43 − 1.43i)8-s + (0.374 − 1.39i)9-s + (−0.256 + 0.164i)10-s + (2.10 + 0.276i)11-s + (−0.0961 + 2.49i)12-s + (3.53 + 1.46i)13-s + (−3.73 + 0.176i)14-s − 0.268i·15-s + (0.734 + 3.93i)16-s + (6.24 + 3.60i)17-s + ⋯ |
L(s) = 1 | + (−0.339 + 0.940i)2-s + (−0.438 − 0.570i)3-s + (−0.769 − 0.638i)4-s + (0.0765 + 0.0587i)5-s + (0.685 − 0.218i)6-s + (0.383 + 0.923i)7-s + (0.862 − 0.506i)8-s + (0.124 − 0.465i)9-s + (−0.0812 + 0.0520i)10-s + (0.634 + 0.0834i)11-s + (−0.0277 + 0.719i)12-s + (0.980 + 0.406i)13-s + (−0.998 + 0.0471i)14-s − 0.0694i·15-s + (0.183 + 0.982i)16-s + (1.51 + 0.874i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 224 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.726 - 0.687i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 224 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.726 - 0.687i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.888285 + 0.353500i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.888285 + 0.353500i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.480 - 1.33i)T \) |
| 7 | \( 1 + (-1.01 - 2.44i)T \) |
good | 3 | \( 1 + (0.758 + 0.988i)T + (-0.776 + 2.89i)T^{2} \) |
| 5 | \( 1 + (-0.171 - 0.131i)T + (1.29 + 4.82i)T^{2} \) |
| 11 | \( 1 + (-2.10 - 0.276i)T + (10.6 + 2.84i)T^{2} \) |
| 13 | \( 1 + (-3.53 - 1.46i)T + (9.19 + 9.19i)T^{2} \) |
| 17 | \( 1 + (-6.24 - 3.60i)T + (8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (0.462 + 3.51i)T + (-18.3 + 4.91i)T^{2} \) |
| 23 | \( 1 + (1.34 - 5.02i)T + (-19.9 - 11.5i)T^{2} \) |
| 29 | \( 1 + (-2.56 + 6.18i)T + (-20.5 - 20.5i)T^{2} \) |
| 31 | \( 1 + (2.46 - 4.27i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (2.06 + 1.58i)T + (9.57 + 35.7i)T^{2} \) |
| 41 | \( 1 + (-4.31 - 4.31i)T + 41iT^{2} \) |
| 43 | \( 1 + (4.15 + 10.0i)T + (-30.4 + 30.4i)T^{2} \) |
| 47 | \( 1 + (-4.71 + 2.71i)T + (23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (-6.20 - 0.817i)T + (51.1 + 13.7i)T^{2} \) |
| 59 | \( 1 + (0.990 - 7.52i)T + (-56.9 - 15.2i)T^{2} \) |
| 61 | \( 1 + (0.817 - 0.107i)T + (58.9 - 15.7i)T^{2} \) |
| 67 | \( 1 + (2.72 + 3.55i)T + (-17.3 + 64.7i)T^{2} \) |
| 71 | \( 1 + (2.53 - 2.53i)T - 71iT^{2} \) |
| 73 | \( 1 + (11.7 - 3.13i)T + (63.2 - 36.5i)T^{2} \) |
| 79 | \( 1 + (2.02 - 1.16i)T + (39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (1.12 + 0.467i)T + (58.6 + 58.6i)T^{2} \) |
| 89 | \( 1 + (16.0 + 4.29i)T + (77.0 + 44.5i)T^{2} \) |
| 97 | \( 1 - 10.3T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.29103136102996264996291438892, −11.61354243322158934862837210109, −10.24715449379402839919671923060, −9.164049563674214346769164482595, −8.384247921090486739112272283531, −7.23936939231585172860687083101, −6.17293406913801435503714586905, −5.62575548419847900032519483642, −3.96982462148214493592145036715, −1.41404452872849767656102253488,
1.30149533186305550350952013544, 3.42807218868649667568348229854, 4.43066247131565615887718523664, 5.59330929475558512488808857999, 7.41154190951474639098431610716, 8.314540549217974292509372008164, 9.583765192847917152805455501481, 10.38010944707407364852358430237, 10.99688743761603753834883276347, 11.85516562787106030402219606295