Properties

Label 2-224-1.1-c5-0-20
Degree $2$
Conductor $224$
Sign $1$
Analytic cond. $35.9259$
Root an. cond. $5.99382$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 27.3·3-s + 52.2·5-s + 49·7-s + 503.·9-s + 142.·11-s + 219.·13-s + 1.42e3·15-s − 1.55e3·17-s + 372.·19-s + 1.33e3·21-s + 3.65e3·23-s − 397.·25-s + 7.11e3·27-s + 4.49e3·29-s − 9.15e3·31-s + 3.88e3·33-s + 2.55e3·35-s + 3.66e3·37-s + 5.99e3·39-s − 1.76e4·41-s + 1.10e4·43-s + 2.62e4·45-s − 1.97e4·47-s + 2.40e3·49-s − 4.25e4·51-s + 2.29e4·53-s + 7.43e3·55-s + ⋯
L(s)  = 1  + 1.75·3-s + 0.934·5-s + 0.377·7-s + 2.07·9-s + 0.354·11-s + 0.359·13-s + 1.63·15-s − 1.30·17-s + 0.236·19-s + 0.662·21-s + 1.44·23-s − 0.127·25-s + 1.87·27-s + 0.991·29-s − 1.71·31-s + 0.621·33-s + 0.353·35-s + 0.440·37-s + 0.630·39-s − 1.64·41-s + 0.914·43-s + 1.93·45-s − 1.30·47-s + 0.142·49-s − 2.28·51-s + 1.12·53-s + 0.331·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 224 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 224 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(224\)    =    \(2^{5} \cdot 7\)
Sign: $1$
Analytic conductor: \(35.9259\)
Root analytic conductor: \(5.99382\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 224,\ (\ :5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(4.863446475\)
\(L(\frac12)\) \(\approx\) \(4.863446475\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
7 \( 1 - 49T \)
good3 \( 1 - 27.3T + 243T^{2} \)
5 \( 1 - 52.2T + 3.12e3T^{2} \)
11 \( 1 - 142.T + 1.61e5T^{2} \)
13 \( 1 - 219.T + 3.71e5T^{2} \)
17 \( 1 + 1.55e3T + 1.41e6T^{2} \)
19 \( 1 - 372.T + 2.47e6T^{2} \)
23 \( 1 - 3.65e3T + 6.43e6T^{2} \)
29 \( 1 - 4.49e3T + 2.05e7T^{2} \)
31 \( 1 + 9.15e3T + 2.86e7T^{2} \)
37 \( 1 - 3.66e3T + 6.93e7T^{2} \)
41 \( 1 + 1.76e4T + 1.15e8T^{2} \)
43 \( 1 - 1.10e4T + 1.47e8T^{2} \)
47 \( 1 + 1.97e4T + 2.29e8T^{2} \)
53 \( 1 - 2.29e4T + 4.18e8T^{2} \)
59 \( 1 + 5.06e4T + 7.14e8T^{2} \)
61 \( 1 - 2.32e4T + 8.44e8T^{2} \)
67 \( 1 + 3.49e4T + 1.35e9T^{2} \)
71 \( 1 - 3.66e4T + 1.80e9T^{2} \)
73 \( 1 - 2.84e4T + 2.07e9T^{2} \)
79 \( 1 + 1.58e4T + 3.07e9T^{2} \)
83 \( 1 - 2.61e4T + 3.93e9T^{2} \)
89 \( 1 - 9.82e4T + 5.58e9T^{2} \)
97 \( 1 + 1.23e5T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.23056085904376587399643954725, −10.12448742193179944551088137308, −9.108792998683760856927701438695, −8.747681196563211493632659002442, −7.53045761958641495070014471957, −6.49641546615463814146994746639, −4.88277312560471376528809797792, −3.58415971493482620999968387622, −2.40700461312426068217490948509, −1.48634184489224277341840464107, 1.48634184489224277341840464107, 2.40700461312426068217490948509, 3.58415971493482620999968387622, 4.88277312560471376528809797792, 6.49641546615463814146994746639, 7.53045761958641495070014471957, 8.747681196563211493632659002442, 9.108792998683760856927701438695, 10.12448742193179944551088137308, 11.23056085904376587399643954725

Graph of the $Z$-function along the critical line