Properties

Label 2-224-1.1-c1-0-4
Degree $2$
Conductor $224$
Sign $1$
Analytic cond. $1.78864$
Root an. cond. $1.33740$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3.23·3-s − 1.23·5-s − 7-s + 7.47·9-s − 2.47·11-s + 5.23·13-s − 4.00·15-s − 4.47·17-s − 3.23·19-s − 3.23·21-s − 4·23-s − 3.47·25-s + 14.4·27-s + 4.47·29-s − 6.47·31-s − 8.00·33-s + 1.23·35-s + 4.47·37-s + 16.9·39-s + 0.472·41-s + 2.47·43-s − 9.23·45-s − 1.52·47-s + 49-s − 14.4·51-s − 10·53-s + 3.05·55-s + ⋯
L(s)  = 1  + 1.86·3-s − 0.552·5-s − 0.377·7-s + 2.49·9-s − 0.745·11-s + 1.45·13-s − 1.03·15-s − 1.08·17-s − 0.742·19-s − 0.706·21-s − 0.834·23-s − 0.694·25-s + 2.78·27-s + 0.830·29-s − 1.16·31-s − 1.39·33-s + 0.208·35-s + 0.735·37-s + 2.71·39-s + 0.0737·41-s + 0.376·43-s − 1.37·45-s − 0.222·47-s + 0.142·49-s − 2.02·51-s − 1.37·53-s + 0.412·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 224 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 224 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(224\)    =    \(2^{5} \cdot 7\)
Sign: $1$
Analytic conductor: \(1.78864\)
Root analytic conductor: \(1.33740\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 224,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.886282611\)
\(L(\frac12)\) \(\approx\) \(1.886282611\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
7 \( 1 + T \)
good3 \( 1 - 3.23T + 3T^{2} \)
5 \( 1 + 1.23T + 5T^{2} \)
11 \( 1 + 2.47T + 11T^{2} \)
13 \( 1 - 5.23T + 13T^{2} \)
17 \( 1 + 4.47T + 17T^{2} \)
19 \( 1 + 3.23T + 19T^{2} \)
23 \( 1 + 4T + 23T^{2} \)
29 \( 1 - 4.47T + 29T^{2} \)
31 \( 1 + 6.47T + 31T^{2} \)
37 \( 1 - 4.47T + 37T^{2} \)
41 \( 1 - 0.472T + 41T^{2} \)
43 \( 1 - 2.47T + 43T^{2} \)
47 \( 1 + 1.52T + 47T^{2} \)
53 \( 1 + 10T + 53T^{2} \)
59 \( 1 - 4.76T + 59T^{2} \)
61 \( 1 - 6.76T + 61T^{2} \)
67 \( 1 + 4T + 67T^{2} \)
71 \( 1 + 12.9T + 71T^{2} \)
73 \( 1 - 14.9T + 73T^{2} \)
79 \( 1 - 4.94T + 79T^{2} \)
83 \( 1 - 4.76T + 83T^{2} \)
89 \( 1 + 6T + 89T^{2} \)
97 \( 1 - 3.52T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.69184392290246865848785566473, −11.14940950384920267977657764595, −10.13066451433255203489171863316, −9.042883762049257040898170081217, −8.356816000659126457280838882807, −7.62017593248943357078401779319, −6.36402485764266418077390521555, −4.29668658677344589822753768806, −3.45664727824938054196263640486, −2.15948301807031587246528686001, 2.15948301807031587246528686001, 3.45664727824938054196263640486, 4.29668658677344589822753768806, 6.36402485764266418077390521555, 7.62017593248943357078401779319, 8.356816000659126457280838882807, 9.042883762049257040898170081217, 10.13066451433255203489171863316, 11.14940950384920267977657764595, 12.69184392290246865848785566473

Graph of the $Z$-function along the critical line