Properties

Label 2-223938-1.1-c1-0-23
Degree $2$
Conductor $223938$
Sign $1$
Analytic cond. $1788.15$
Root an. cond. $42.2865$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 4-s + 2·5-s + 3·7-s + 8-s + 2·10-s + 11-s − 13-s + 3·14-s + 16-s + 8·17-s − 2·19-s + 2·20-s + 22-s + 8·23-s − 25-s − 26-s + 3·28-s + 29-s + 5·31-s + 32-s + 8·34-s + 6·35-s + 6·37-s − 2·38-s + 2·40-s − 2·41-s + ⋯
L(s)  = 1  + 0.707·2-s + 1/2·4-s + 0.894·5-s + 1.13·7-s + 0.353·8-s + 0.632·10-s + 0.301·11-s − 0.277·13-s + 0.801·14-s + 1/4·16-s + 1.94·17-s − 0.458·19-s + 0.447·20-s + 0.213·22-s + 1.66·23-s − 1/5·25-s − 0.196·26-s + 0.566·28-s + 0.185·29-s + 0.898·31-s + 0.176·32-s + 1.37·34-s + 1.01·35-s + 0.986·37-s − 0.324·38-s + 0.316·40-s − 0.312·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 223938 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 223938 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(223938\)    =    \(2 \cdot 3^{3} \cdot 11 \cdot 13 \cdot 29\)
Sign: $1$
Analytic conductor: \(1788.15\)
Root analytic conductor: \(42.2865\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 223938,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(9.054281479\)
\(L(\frac12)\) \(\approx\) \(9.054281479\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - T \)
3 \( 1 \)
11 \( 1 - T \)
13 \( 1 + T \)
29 \( 1 - T \)
good5 \( 1 - 2 T + p T^{2} \)
7 \( 1 - 3 T + p T^{2} \)
17 \( 1 - 8 T + p T^{2} \)
19 \( 1 + 2 T + p T^{2} \)
23 \( 1 - 8 T + p T^{2} \)
31 \( 1 - 5 T + p T^{2} \)
37 \( 1 - 6 T + p T^{2} \)
41 \( 1 + 2 T + p T^{2} \)
43 \( 1 - 2 T + p T^{2} \)
47 \( 1 + 6 T + p T^{2} \)
53 \( 1 - 8 T + p T^{2} \)
59 \( 1 + 3 T + p T^{2} \)
61 \( 1 + 7 T + p T^{2} \)
67 \( 1 + 6 T + p T^{2} \)
71 \( 1 - T + p T^{2} \)
73 \( 1 + 3 T + p T^{2} \)
79 \( 1 - 10 T + p T^{2} \)
83 \( 1 - 6 T + p T^{2} \)
89 \( 1 + 2 T + p T^{2} \)
97 \( 1 + 10 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.09886291109265, −12.35405189693104, −12.14849966366842, −11.68244421286932, −11.06921575940217, −10.76740824583262, −10.18853670402453, −9.735016490660686, −9.325247732845931, −8.693726843517155, −8.065767026220511, −7.785319076647674, −7.228927378598866, −6.588282847012334, −6.194287041303849, −5.548155996383632, −5.240334374785196, −4.808724893880282, −4.231212949274065, −3.646324094393014, −2.800221935443838, −2.692620628356238, −1.662552393122022, −1.420588770577979, −0.7555179864567152, 0.7555179864567152, 1.420588770577979, 1.662552393122022, 2.692620628356238, 2.800221935443838, 3.646324094393014, 4.231212949274065, 4.808724893880282, 5.240334374785196, 5.548155996383632, 6.194287041303849, 6.588282847012334, 7.228927378598866, 7.785319076647674, 8.065767026220511, 8.693726843517155, 9.325247732845931, 9.735016490660686, 10.18853670402453, 10.76740824583262, 11.06921575940217, 11.68244421286932, 12.14849966366842, 12.35405189693104, 13.09886291109265

Graph of the $Z$-function along the critical line