Properties

Label 2-221760-1.1-c1-0-104
Degree $2$
Conductor $221760$
Sign $1$
Analytic cond. $1770.76$
Root an. cond. $42.0804$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5-s + 7-s + 11-s + 6·13-s − 6·17-s + 4·23-s + 25-s + 2·29-s − 35-s + 2·37-s + 2·41-s + 8·43-s − 12·47-s + 49-s − 6·53-s − 55-s + 4·59-s − 2·61-s − 6·65-s + 12·67-s + 4·71-s − 6·73-s + 77-s + 8·79-s + 12·83-s + 6·85-s + 6·89-s + ⋯
L(s)  = 1  − 0.447·5-s + 0.377·7-s + 0.301·11-s + 1.66·13-s − 1.45·17-s + 0.834·23-s + 1/5·25-s + 0.371·29-s − 0.169·35-s + 0.328·37-s + 0.312·41-s + 1.21·43-s − 1.75·47-s + 1/7·49-s − 0.824·53-s − 0.134·55-s + 0.520·59-s − 0.256·61-s − 0.744·65-s + 1.46·67-s + 0.474·71-s − 0.702·73-s + 0.113·77-s + 0.900·79-s + 1.31·83-s + 0.650·85-s + 0.635·89-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 221760 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 221760 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(221760\)    =    \(2^{6} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 11\)
Sign: $1$
Analytic conductor: \(1770.76\)
Root analytic conductor: \(42.0804\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 221760,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.969169472\)
\(L(\frac12)\) \(\approx\) \(2.969169472\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 + T \)
7 \( 1 - T \)
11 \( 1 - T \)
good13 \( 1 - 6 T + p T^{2} \) 1.13.ag
17 \( 1 + 6 T + p T^{2} \) 1.17.g
19 \( 1 + p T^{2} \) 1.19.a
23 \( 1 - 4 T + p T^{2} \) 1.23.ae
29 \( 1 - 2 T + p T^{2} \) 1.29.ac
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 - 2 T + p T^{2} \) 1.37.ac
41 \( 1 - 2 T + p T^{2} \) 1.41.ac
43 \( 1 - 8 T + p T^{2} \) 1.43.ai
47 \( 1 + 12 T + p T^{2} \) 1.47.m
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 - 4 T + p T^{2} \) 1.59.ae
61 \( 1 + 2 T + p T^{2} \) 1.61.c
67 \( 1 - 12 T + p T^{2} \) 1.67.am
71 \( 1 - 4 T + p T^{2} \) 1.71.ae
73 \( 1 + 6 T + p T^{2} \) 1.73.g
79 \( 1 - 8 T + p T^{2} \) 1.79.ai
83 \( 1 - 12 T + p T^{2} \) 1.83.am
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 - 2 T + p T^{2} \) 1.97.ac
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.93469739037715, −12.65215749176044, −11.89899738958478, −11.46511932728950, −11.05364019008972, −10.88300277528659, −10.33172695358747, −9.489905450754679, −9.190620643557203, −8.702870275218066, −8.235006786013948, −7.926184328144383, −7.198900231151656, −6.675740016921603, −6.338807579341831, −5.855399497534444, −5.057518571889325, −4.690301465971471, −4.107919540137505, −3.651422484144638, −3.121910966498001, −2.390308802944421, −1.781117611438332, −1.091307086039004, −0.5390005026583258, 0.5390005026583258, 1.091307086039004, 1.781117611438332, 2.390308802944421, 3.121910966498001, 3.651422484144638, 4.107919540137505, 4.690301465971471, 5.057518571889325, 5.855399497534444, 6.338807579341831, 6.675740016921603, 7.198900231151656, 7.926184328144383, 8.235006786013948, 8.702870275218066, 9.190620643557203, 9.489905450754679, 10.33172695358747, 10.88300277528659, 11.05364019008972, 11.46511932728950, 11.89899738958478, 12.65215749176044, 12.93469739037715

Graph of the $Z$-function along the critical line