Properties

Label 2-2205-1.1-c3-0-34
Degree $2$
Conductor $2205$
Sign $1$
Analytic cond. $130.099$
Root an. cond. $11.4061$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4.70·2-s + 14.1·4-s − 5·5-s − 28.7·8-s + 23.5·10-s − 24.5·11-s + 35.0·13-s + 22.1·16-s − 18.4·17-s + 67.4·19-s − 70.5·20-s + 115.·22-s + 145.·23-s + 25·25-s − 164.·26-s − 214.·29-s + 88.6·31-s + 125.·32-s + 86.5·34-s + 162.·37-s − 316.·38-s + 143.·40-s − 337.·41-s + 122.·43-s − 346.·44-s − 684.·46-s + 354.·47-s + ⋯
L(s)  = 1  − 1.66·2-s + 1.76·4-s − 0.447·5-s − 1.26·8-s + 0.743·10-s − 0.674·11-s + 0.747·13-s + 0.345·16-s − 0.262·17-s + 0.813·19-s − 0.788·20-s + 1.12·22-s + 1.32·23-s + 0.200·25-s − 1.24·26-s − 1.37·29-s + 0.513·31-s + 0.694·32-s + 0.436·34-s + 0.720·37-s − 1.35·38-s + 0.567·40-s − 1.28·41-s + 0.433·43-s − 1.18·44-s − 2.19·46-s + 1.09·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2205 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2205 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2205\)    =    \(3^{2} \cdot 5 \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(130.099\)
Root analytic conductor: \(11.4061\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2205,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(0.7203154080\)
\(L(\frac12)\) \(\approx\) \(0.7203154080\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( 1 + 5T \)
7 \( 1 \)
good2 \( 1 + 4.70T + 8T^{2} \)
11 \( 1 + 24.5T + 1.33e3T^{2} \)
13 \( 1 - 35.0T + 2.19e3T^{2} \)
17 \( 1 + 18.4T + 4.91e3T^{2} \)
19 \( 1 - 67.4T + 6.85e3T^{2} \)
23 \( 1 - 145.T + 1.21e4T^{2} \)
29 \( 1 + 214.T + 2.43e4T^{2} \)
31 \( 1 - 88.6T + 2.97e4T^{2} \)
37 \( 1 - 162.T + 5.06e4T^{2} \)
41 \( 1 + 337.T + 6.89e4T^{2} \)
43 \( 1 - 122.T + 7.95e4T^{2} \)
47 \( 1 - 354.T + 1.03e5T^{2} \)
53 \( 1 + 676.T + 1.48e5T^{2} \)
59 \( 1 - 501.T + 2.05e5T^{2} \)
61 \( 1 - 708.T + 2.26e5T^{2} \)
67 \( 1 + 907.T + 3.00e5T^{2} \)
71 \( 1 + 430.T + 3.57e5T^{2} \)
73 \( 1 + 41.3T + 3.89e5T^{2} \)
79 \( 1 - 890.T + 4.93e5T^{2} \)
83 \( 1 + 1.05e3T + 5.71e5T^{2} \)
89 \( 1 - 1.47e3T + 7.04e5T^{2} \)
97 \( 1 + 555.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.765023127653518868449475180324, −8.011307591654896696318463065031, −7.43039046950796777063564665707, −6.77500121526243522454268513281, −5.76951821820016139012997102054, −4.75093120025812212571984131523, −3.50589041345024107644173498813, −2.55841064261338600173888301568, −1.41669654627431476667269737316, −0.52963839797465127935562734935, 0.52963839797465127935562734935, 1.41669654627431476667269737316, 2.55841064261338600173888301568, 3.50589041345024107644173498813, 4.75093120025812212571984131523, 5.76951821820016139012997102054, 6.77500121526243522454268513281, 7.43039046950796777063564665707, 8.011307591654896696318463065031, 8.765023127653518868449475180324

Graph of the $Z$-function along the critical line