L(s) = 1 | − 4.70·2-s + 14.1·4-s − 5·5-s − 28.7·8-s + 23.5·10-s − 24.5·11-s + 35.0·13-s + 22.1·16-s − 18.4·17-s + 67.4·19-s − 70.5·20-s + 115.·22-s + 145.·23-s + 25·25-s − 164.·26-s − 214.·29-s + 88.6·31-s + 125.·32-s + 86.5·34-s + 162.·37-s − 316.·38-s + 143.·40-s − 337.·41-s + 122.·43-s − 346.·44-s − 684.·46-s + 354.·47-s + ⋯ |
L(s) = 1 | − 1.66·2-s + 1.76·4-s − 0.447·5-s − 1.26·8-s + 0.743·10-s − 0.674·11-s + 0.747·13-s + 0.345·16-s − 0.262·17-s + 0.813·19-s − 0.788·20-s + 1.12·22-s + 1.32·23-s + 0.200·25-s − 1.24·26-s − 1.37·29-s + 0.513·31-s + 0.694·32-s + 0.436·34-s + 0.720·37-s − 1.35·38-s + 0.567·40-s − 1.28·41-s + 0.433·43-s − 1.18·44-s − 2.19·46-s + 1.09·47-s + ⋯ |
Λ(s)=(=(2205s/2ΓC(s)L(s)Λ(4−s)
Λ(s)=(=(2205s/2ΓC(s+3/2)L(s)Λ(1−s)
Particular Values
L(2) |
≈ |
0.7203154080 |
L(21) |
≈ |
0.7203154080 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 5 | 1+5T |
| 7 | 1 |
good | 2 | 1+4.70T+8T2 |
| 11 | 1+24.5T+1.33e3T2 |
| 13 | 1−35.0T+2.19e3T2 |
| 17 | 1+18.4T+4.91e3T2 |
| 19 | 1−67.4T+6.85e3T2 |
| 23 | 1−145.T+1.21e4T2 |
| 29 | 1+214.T+2.43e4T2 |
| 31 | 1−88.6T+2.97e4T2 |
| 37 | 1−162.T+5.06e4T2 |
| 41 | 1+337.T+6.89e4T2 |
| 43 | 1−122.T+7.95e4T2 |
| 47 | 1−354.T+1.03e5T2 |
| 53 | 1+676.T+1.48e5T2 |
| 59 | 1−501.T+2.05e5T2 |
| 61 | 1−708.T+2.26e5T2 |
| 67 | 1+907.T+3.00e5T2 |
| 71 | 1+430.T+3.57e5T2 |
| 73 | 1+41.3T+3.89e5T2 |
| 79 | 1−890.T+4.93e5T2 |
| 83 | 1+1.05e3T+5.71e5T2 |
| 89 | 1−1.47e3T+7.04e5T2 |
| 97 | 1+555.T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.765023127653518868449475180324, −8.011307591654896696318463065031, −7.43039046950796777063564665707, −6.77500121526243522454268513281, −5.76951821820016139012997102054, −4.75093120025812212571984131523, −3.50589041345024107644173498813, −2.55841064261338600173888301568, −1.41669654627431476667269737316, −0.52963839797465127935562734935,
0.52963839797465127935562734935, 1.41669654627431476667269737316, 2.55841064261338600173888301568, 3.50589041345024107644173498813, 4.75093120025812212571984131523, 5.76951821820016139012997102054, 6.77500121526243522454268513281, 7.43039046950796777063564665707, 8.011307591654896696318463065031, 8.765023127653518868449475180324