L(s) = 1 | − 3·2-s + 4-s + 5·5-s + 21·8-s − 15·10-s − 60·11-s − 38·13-s − 71·16-s − 84·17-s − 110·19-s + 5·20-s + 180·22-s − 120·23-s + 25·25-s + 114·26-s − 162·29-s − 236·31-s + 45·32-s + 252·34-s − 376·37-s + 330·38-s + 105·40-s − 126·41-s − 34·43-s − 60·44-s + 360·46-s − 6·47-s + ⋯ |
L(s) = 1 | − 1.06·2-s + 1/8·4-s + 0.447·5-s + 0.928·8-s − 0.474·10-s − 1.64·11-s − 0.810·13-s − 1.10·16-s − 1.19·17-s − 1.32·19-s + 0.0559·20-s + 1.74·22-s − 1.08·23-s + 1/5·25-s + 0.859·26-s − 1.03·29-s − 1.36·31-s + 0.248·32-s + 1.27·34-s − 1.67·37-s + 1.40·38-s + 0.415·40-s − 0.479·41-s − 0.120·43-s − 0.205·44-s + 1.15·46-s − 0.0186·47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2205 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2205 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 5 | \( 1 - p T \) |
| 7 | \( 1 \) |
good | 2 | \( 1 + 3 T + p^{3} T^{2} \) |
| 11 | \( 1 + 60 T + p^{3} T^{2} \) |
| 13 | \( 1 + 38 T + p^{3} T^{2} \) |
| 17 | \( 1 + 84 T + p^{3} T^{2} \) |
| 19 | \( 1 + 110 T + p^{3} T^{2} \) |
| 23 | \( 1 + 120 T + p^{3} T^{2} \) |
| 29 | \( 1 + 162 T + p^{3} T^{2} \) |
| 31 | \( 1 + 236 T + p^{3} T^{2} \) |
| 37 | \( 1 + 376 T + p^{3} T^{2} \) |
| 41 | \( 1 + 126 T + p^{3} T^{2} \) |
| 43 | \( 1 + 34 T + p^{3} T^{2} \) |
| 47 | \( 1 + 6 T + p^{3} T^{2} \) |
| 53 | \( 1 + 582 T + p^{3} T^{2} \) |
| 59 | \( 1 - 492 T + p^{3} T^{2} \) |
| 61 | \( 1 - 880 T + p^{3} T^{2} \) |
| 67 | \( 1 + 826 T + p^{3} T^{2} \) |
| 71 | \( 1 - 666 T + p^{3} T^{2} \) |
| 73 | \( 1 - 826 T + p^{3} T^{2} \) |
| 79 | \( 1 + 592 T + p^{3} T^{2} \) |
| 83 | \( 1 - 792 T + p^{3} T^{2} \) |
| 89 | \( 1 - 1002 T + p^{3} T^{2} \) |
| 97 | \( 1 + 1442 T + p^{3} T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.110663868806123005477054818030, −7.35550460426710145355927072800, −6.62015842029767022616525094744, −5.44316454057787386226929985565, −4.85332816045681976677897821810, −3.81620682432931050446828218037, −2.28367157440434318107390866674, −1.92063493960078356258720300073, 0, 0,
1.92063493960078356258720300073, 2.28367157440434318107390866674, 3.81620682432931050446828218037, 4.85332816045681976677897821810, 5.44316454057787386226929985565, 6.62015842029767022616525094744, 7.35550460426710145355927072800, 8.110663868806123005477054818030