Properties

Label 2-2205-1.1-c3-0-183
Degree $2$
Conductor $2205$
Sign $-1$
Analytic cond. $130.099$
Root an. cond. $11.4061$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3.53·2-s + 4.46·4-s + 5·5-s − 12.4·8-s + 17.6·10-s + 2.93·11-s + 19.0·13-s − 79.7·16-s + 122.·17-s − 107.·19-s + 22.3·20-s + 10.3·22-s − 210.·23-s + 25·25-s + 67.3·26-s − 95.4·29-s + 94.3·31-s − 181.·32-s + 432.·34-s + 97.1·37-s − 379.·38-s − 62.3·40-s − 491.·41-s − 43.0·43-s + 13.1·44-s − 743.·46-s + 473.·47-s + ⋯
L(s)  = 1  + 1.24·2-s + 0.558·4-s + 0.447·5-s − 0.551·8-s + 0.558·10-s + 0.0805·11-s + 0.406·13-s − 1.24·16-s + 1.74·17-s − 1.29·19-s + 0.249·20-s + 0.100·22-s − 1.90·23-s + 0.200·25-s + 0.507·26-s − 0.611·29-s + 0.546·31-s − 1.00·32-s + 2.18·34-s + 0.431·37-s − 1.61·38-s − 0.246·40-s − 1.87·41-s − 0.152·43-s + 0.0449·44-s − 2.38·46-s + 1.46·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2205 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2205 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2205\)    =    \(3^{2} \cdot 5 \cdot 7^{2}\)
Sign: $-1$
Analytic conductor: \(130.099\)
Root analytic conductor: \(11.4061\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 2205,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( 1 - 5T \)
7 \( 1 \)
good2 \( 1 - 3.53T + 8T^{2} \)
11 \( 1 - 2.93T + 1.33e3T^{2} \)
13 \( 1 - 19.0T + 2.19e3T^{2} \)
17 \( 1 - 122.T + 4.91e3T^{2} \)
19 \( 1 + 107.T + 6.85e3T^{2} \)
23 \( 1 + 210.T + 1.21e4T^{2} \)
29 \( 1 + 95.4T + 2.43e4T^{2} \)
31 \( 1 - 94.3T + 2.97e4T^{2} \)
37 \( 1 - 97.1T + 5.06e4T^{2} \)
41 \( 1 + 491.T + 6.89e4T^{2} \)
43 \( 1 + 43.0T + 7.95e4T^{2} \)
47 \( 1 - 473.T + 1.03e5T^{2} \)
53 \( 1 - 183.T + 1.48e5T^{2} \)
59 \( 1 + 760.T + 2.05e5T^{2} \)
61 \( 1 - 198.T + 2.26e5T^{2} \)
67 \( 1 + 309.T + 3.00e5T^{2} \)
71 \( 1 + 665.T + 3.57e5T^{2} \)
73 \( 1 + 621.T + 3.89e5T^{2} \)
79 \( 1 + 24.7T + 4.93e5T^{2} \)
83 \( 1 + 406.T + 5.71e5T^{2} \)
89 \( 1 - 261.T + 7.04e5T^{2} \)
97 \( 1 - 1.00e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.303051664168433483619884952271, −7.41075753999081805837649244010, −6.23158719810207553787429696299, −5.97264994613631742559995850922, −5.13052200273767844145512290324, −4.19128463776645862515108061213, −3.57217315147426543463037173250, −2.58473619934838414296704277849, −1.54223710888771067470345598373, 0, 1.54223710888771067470345598373, 2.58473619934838414296704277849, 3.57217315147426543463037173250, 4.19128463776645862515108061213, 5.13052200273767844145512290324, 5.97264994613631742559995850922, 6.23158719810207553787429696299, 7.41075753999081805837649244010, 8.303051664168433483619884952271

Graph of the $Z$-function along the critical line