Properties

Label 2-2200-88.21-c0-0-9
Degree $2$
Conductor $2200$
Sign $1$
Analytic cond. $1.09794$
Root an. cond. $1.04782$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 4-s + 8-s + 9-s + 11-s − 13-s + 16-s + 18-s − 19-s + 22-s − 23-s − 26-s − 29-s − 31-s + 32-s + 36-s − 38-s − 43-s + 44-s − 46-s + 2·47-s + 49-s − 52-s − 58-s + 2·61-s − 62-s + 64-s + ⋯
L(s)  = 1  + 2-s + 4-s + 8-s + 9-s + 11-s − 13-s + 16-s + 18-s − 19-s + 22-s − 23-s − 26-s − 29-s − 31-s + 32-s + 36-s − 38-s − 43-s + 44-s − 46-s + 2·47-s + 49-s − 52-s − 58-s + 2·61-s − 62-s + 64-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2200 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2200 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2200\)    =    \(2^{3} \cdot 5^{2} \cdot 11\)
Sign: $1$
Analytic conductor: \(1.09794\)
Root analytic conductor: \(1.04782\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: $\chi_{2200} (901, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2200,\ (\ :0),\ 1)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(2.382779157\)
\(L(\frac12)\) \(\approx\) \(2.382779157\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - T \)
5 \( 1 \)
11 \( 1 - T \)
good3 \( ( 1 - T )( 1 + T ) \)
7 \( ( 1 - T )( 1 + T ) \)
13 \( 1 + T + T^{2} \)
17 \( ( 1 - T )( 1 + T ) \)
19 \( 1 + T + T^{2} \)
23 \( 1 + T + T^{2} \)
29 \( 1 + T + T^{2} \)
31 \( 1 + T + T^{2} \)
37 \( ( 1 - T )( 1 + T ) \)
41 \( ( 1 - T )( 1 + T ) \)
43 \( 1 + T + T^{2} \)
47 \( ( 1 - T )^{2} \)
53 \( ( 1 - T )( 1 + T ) \)
59 \( ( 1 - T )( 1 + T ) \)
61 \( ( 1 - T )^{2} \)
67 \( ( 1 - T )( 1 + T ) \)
71 \( 1 + T + T^{2} \)
73 \( ( 1 - T )( 1 + T ) \)
79 \( ( 1 - T )( 1 + T ) \)
83 \( 1 + T + T^{2} \)
89 \( 1 + T + T^{2} \)
97 \( 1 + T + T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.391987260325166612798392918213, −8.344003114915544052181472109571, −7.27421084559245268920291484265, −6.98835320256073516640385190839, −6.01677262634860356360896829537, −5.23522649027492359773655753499, −4.10979877199769607628418438134, −3.94129290695413911549865627245, −2.45714168978037941941148131417, −1.61778532295352557925562876125, 1.61778532295352557925562876125, 2.45714168978037941941148131417, 3.94129290695413911549865627245, 4.10979877199769607628418438134, 5.23522649027492359773655753499, 6.01677262634860356360896829537, 6.98835320256073516640385190839, 7.27421084559245268920291484265, 8.344003114915544052181472109571, 9.391987260325166612798392918213

Graph of the $Z$-function along the critical line