Properties

Label 2-2200-88.21-c0-0-5
Degree $2$
Conductor $2200$
Sign $1$
Analytic cond. $1.09794$
Root an. cond. $1.04782$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s − 8-s + 9-s + 11-s + 13-s + 16-s − 18-s − 19-s − 22-s + 23-s − 26-s − 29-s − 31-s − 32-s + 36-s + 38-s + 43-s + 44-s − 46-s − 2·47-s + 49-s + 52-s + 58-s + 2·61-s + 62-s + 64-s + ⋯
L(s)  = 1  − 2-s + 4-s − 8-s + 9-s + 11-s + 13-s + 16-s − 18-s − 19-s − 22-s + 23-s − 26-s − 29-s − 31-s − 32-s + 36-s + 38-s + 43-s + 44-s − 46-s − 2·47-s + 49-s + 52-s + 58-s + 2·61-s + 62-s + 64-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2200 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2200 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2200\)    =    \(2^{3} \cdot 5^{2} \cdot 11\)
Sign: $1$
Analytic conductor: \(1.09794\)
Root analytic conductor: \(1.04782\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: $\chi_{2200} (901, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2200,\ (\ :0),\ 1)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(0.9062976338\)
\(L(\frac12)\) \(\approx\) \(0.9062976338\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + T \)
5 \( 1 \)
11 \( 1 - T \)
good3 \( ( 1 - T )( 1 + T ) \)
7 \( ( 1 - T )( 1 + T ) \)
13 \( 1 - T + T^{2} \)
17 \( ( 1 - T )( 1 + T ) \)
19 \( 1 + T + T^{2} \)
23 \( 1 - T + T^{2} \)
29 \( 1 + T + T^{2} \)
31 \( 1 + T + T^{2} \)
37 \( ( 1 - T )( 1 + T ) \)
41 \( ( 1 - T )( 1 + T ) \)
43 \( 1 - T + T^{2} \)
47 \( ( 1 + T )^{2} \)
53 \( ( 1 - T )( 1 + T ) \)
59 \( ( 1 - T )( 1 + T ) \)
61 \( ( 1 - T )^{2} \)
67 \( ( 1 - T )( 1 + T ) \)
71 \( 1 + T + T^{2} \)
73 \( ( 1 - T )( 1 + T ) \)
79 \( ( 1 - T )( 1 + T ) \)
83 \( 1 - T + T^{2} \)
89 \( 1 + T + T^{2} \)
97 \( 1 - T + T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.153236225604270911847479582476, −8.670364447187520740972356742937, −7.74284702796142789072446597650, −6.94003040257831576395723441821, −6.45856741694803557457123744993, −5.50916669926304307419994787921, −4.18085065766774793436021179936, −3.45471518698009462447550980134, −2.04366063587580731377332647993, −1.17994911076995473842188100042, 1.17994911076995473842188100042, 2.04366063587580731377332647993, 3.45471518698009462447550980134, 4.18085065766774793436021179936, 5.50916669926304307419994787921, 6.45856741694803557457123744993, 6.94003040257831576395723441821, 7.74284702796142789072446597650, 8.670364447187520740972356742937, 9.153236225604270911847479582476

Graph of the $Z$-function along the critical line